Direct simulation of the motion of a settling ellipsoid in Newtonian fluid

In this paper, we discuss the generalization of a Lagrange multiplier-based fictitious domain method to the simulation of the motion of general shape particles in Newtonian fluid. Preliminary numerical results of a settling ellipsoid in a narrow channel filled with a Newtonian fluid are presented. As expected, the ellipsoid turns its broadside to the stream in the simulations.

[1]  Howard H. Hu Direct simulation of flows of solid-liquid mixtures , 1996 .

[2]  Jacques Periaux,et al.  A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow , 2000 .

[3]  Ted Belytschko,et al.  The extended finite element method for rigid particles in Stokes flow , 2001 .

[4]  R. Glowinski,et al.  Modelling Rayleigh–Taylor instability of a sedimenting suspension of several thousand circular particles in a direct numerical simulation , 2001, Journal of Fluid Mechanics.

[5]  Tayfun E. Tezduyar,et al.  3D Simulation of fluid-particle interactions with the number of particles reaching 100 , 1997 .

[6]  Howard H. Hu,et al.  Direct simulation of fluid particle motions , 1992 .

[7]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[8]  Stephen P. Boyd,et al.  Efficient distance computation using best ellipsoid fit , 1992, Proceedings of the 1992 IEEE International Symposium on Intelligent Control.

[9]  Daniel D. Joseph,et al.  Sedimentation of particles in polymer solutions , 1993, Journal of Fluid Mechanics.

[10]  R. Glowinski,et al.  Fluidization of 1204 spheres: simulation and experiment , 2002, Journal of Fluid Mechanics.

[11]  Roland Glowinski,et al.  A wave equation approach to the numerical solution of the Navier-Stokes equations for incompressible viscous flow , 1997 .

[12]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[13]  J.C.K. Chou,et al.  Quaternion kinematic and dynamic differential equations , 1992, IEEE Trans. Robotics Autom..

[14]  Jacques Periaux,et al.  Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies , 1998 .

[15]  J. Desanto Mathematical and numerical aspects of wave propagation , 1998 .

[16]  F. Baaijens A fictitious domain/mortar element method for fluid-structure interaction , 2001 .

[17]  Daniel D. Joseph,et al.  Distributed Lagrange multiplier method for particulate flows with collisions , 2003 .

[18]  Charles S. Peskin,et al.  Modeling prosthetic heart valves for numerical analysis of blood flow in the heart , 1980 .

[19]  C. Farhat,et al.  Domain Decomposition Methods 10 , 1998 .

[20]  Bertrand Maury,et al.  Fluid-particle flow: a symmetric formulation , 1997 .

[21]  Jacques Periaux,et al.  A fictitious domain method with distributed Lagrange multipliers for the numerical simulation of par , 1998 .

[22]  Roland Glowinski,et al.  Computational science for the 21st Century , 1997 .

[23]  Jacques Periaux,et al.  A distributed Lagrange multiplier/fictitious domain method for flows around moving rigid bodies : Application to particulate flow , 1999 .

[24]  G. Marchuk Splitting and alternating direction methods , 1990 .

[25]  R. Glowinski,et al.  A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .