Physical characteristics of Comet Nucleus C/2001 OG108 (LONEOS)

Abstract A detailed description of the Halley-type Comet C/2001 OG108 (LONEOS) has been derived from visible, near-infrared, and mid-infrared observations obtained in October and November 2001. These data represent the first high-quality ground-based observations of a bare Halley-type comet nucleus and provide the best characterization of a Halley-type comet other than 1P/Halley itself. Analysis of time series photometry suggests that the nucleus has a rotation period of 57.2 ± 0.5  h with a minimum nuclear axial ratio of 1.3, a phase-darkening slope parameter G of − 0.01 ± 0.10 , and an estimated H = 13.05 ± 0.10 . The rotation period of C/2001 OG108 is one of the longest observed among comet nuclei. The V-R color index for this object is measured to be 0.46 ± 0.02 , which is virtually identical to that of other cometary nuclei and other possible extinct comet candidates. Measurements of the comet's thermal emission constrain the projected elliptical nuclear radii to be 9.6 ± 1.0  km and 7.4 ± 1.0  km , which makes C/2001 OG108 one of the larger cometary nuclei known. The derived geometric albedo in V-band of 0.040 ± 0.010 is typical for comet nuclei. Visible-wavelength spectrophotometry and near-infrared spectroscopy were combined to derive the nucleus's reflectance spectrum over a 0.4 to 2.5 μm wavelength range. These measurements represent one of the few nuclear spectra ever observed and the only known spectrum of a Halley-type comet. The spectrum of this comet nucleus is very nearly linear and shows no discernable absorption features at a 5% detection limit. The lack of any features, especially in the 0.8 to 1.0 μm range such as are seen in the spectra of carbonaceous chondrite meteorites and many low-albedo asteroids, is consistent with the presence of anhydrous rather than hydrous silicates on the surface of this comet. None of the currently recognized meteorites in the terrestrial collections have reflectance spectra that match C/2001 OG108. The near-infrared spectrum, the geometric albedo, and the visible spectrophotometry all indicate that C/2001 OG108 has spectral properties analogous to the D-type, and possibly P-type asteroids. Comparison of the measured albedo and diameter of C/2001 OG108 with those of Damocloid asteroids reveals similarities between these asteroids and this comet nucleus, a finding which supports previous dynamical arguments that Damocloid asteroids could be composed of cometary-like materials. These observations are also consistent with findings that two Jupiter-family comets may have spectral signatures indicative of D-type asteroids. C/2001 OG108 probably represents the transition from a typical active comet to an extinct cometary nucleus, and, as a Halley-type comet, suggests that some comets originating in the Oort cloud can become extinct without disintegrating. As a near-Earth object, C/2001 OG108 supports the suggestion that some fraction of the near-Earth asteroid population consists of extinct cometary nuclei.

[1]  Paul R. Weissman,et al.  Physical loss of long-period comets , 1980 .

[2]  Philippe Lamy,et al.  Physical Properties of the Nucleus of Comet 2P/Encke , 2000 .

[3]  P. Lamy,et al.  The sizes, shapes, albedos, and colors of cometary nuclei , 2004 .

[4]  P G Brown,et al.  The fall, recovery, orbit, and composition of the Tagish Lake meteorite: a new type of carbonaceous chondrite. , 2000, Science.

[5]  J. Bauer,et al.  Physical survey of 24 Centaurs with visible photometry , 2002 .

[6]  Harold F. Levison,et al.  Evolution of comets into asteroids , 1989 .

[7]  Alan W. Harris,et al.  A Thermal Model for Near-Earth Asteroids , 1998 .

[8]  Richard P. Binzel,et al.  Asteroid spectroscopy: Progress and perspectives , 1993 .

[9]  Harold F. Levison,et al.  The Long-Term Dynamical Behavior of Short-Period Comets , 1993 .

[10]  Scott S. Sheppard,et al.  Hawaii Kuiper Belt Variability Project: An Update , 2003 .

[11]  D. Tholen,et al.  Asteroid Taxonomy from Cluster Analysis of Photometry. , 1984 .

[12]  M. Bailey,et al.  Asteroid 5335 Damocles and its implications for cometary dynamics , 1994 .

[13]  George W. Wetherill,et al.  Where do the Apollo objects come from , 1988 .

[14]  David Jewitt,et al.  Albedos of Asteroids in Comet-Like Orbits , 2005 .

[15]  Bonnie J. Buratti,et al.  Physical Observations of 1996 PW and 1997 SE5: Extinct Comets or D-Type Asteroids? , 2000 .

[16]  A. Harris,et al.  Thermal Infrared Spectrophotometry of the Near-Earth Asteroids 2100 Ra-Shalom and 1991 EE , 1998 .

[17]  Michael J. S. Belton,et al.  Rotation of Cometary Nuclei , 2005 .

[18]  J. Luu Spectral Diversity among the Nuclei of Comets , 1993 .

[19]  D. Jewitt A First Look at the Damocloids , 2005 .

[20]  M. Gaffey,et al.  Near-Earth Asteroids: Possible Sources from Reflectance Spectroscopy , 1985, Science.

[21]  Alan W. Iarris Tumbling Asteroids , 1997 .

[22]  D. Allen Infrared Diameter of Vesta , 1970, Nature.

[23]  Robert L. Millis,et al.  The ensemble properties of comets: Results from narrowband photometry of 85 comets , 1995 .

[24]  M. A’Hearn Observations of Cometary Nuclei , 1988 .

[25]  Stephan D. Price,et al.  The Supplemental IRAS Minor Planet Survey , 2002 .

[26]  C. V. Houten,et al.  Distant asteroids and outer Jovian satellites , 1979 .

[27]  N. Mcbride,et al.  The Lightcurve and Colors of Unusual Minor Planet 1996 PW , 1998 .

[28]  W. Calvin,et al.  Spectral characteristics of iron‐bearing phyllosilicates: Comparison to Orgueil (CI1), Murchison and Murray (CM2) , 1997 .

[29]  Michael E. Zolensky,et al.  The Tagish Lake Meteorite: A Possible Sample from a D-Type Asteroid , 2001, Science.

[30]  L. Lara,et al.  Near-infrared spectroscopy of the nucleus of comet 124P/Mrkos , 2003 .

[31]  Stephen M. Larson,et al.  Ferric Iron in Primitive Asteroids: A 0.43-μm Absorption Feature , 1993 .

[32]  Faith Vilas,et al.  Iron Alteration Minerals in the Visible and Near-Infrared Spectra of Low-Albedo Asteroids , 1994 .

[33]  Joshua Patrick Emery,et al.  The surface composition of Trojan asteroids: constraints set by scattering theory , 2004 .

[34]  P. Weissman,et al.  Rapid collisional evolution of comets during the formation of the Oort cloud , 2001, Nature.

[35]  D. Brownlee,et al.  Identification of Individual Cometary IDP's by Thermally Stepped He Release , 1995 .

[36]  Fred L. Whipple,et al.  A comet model. I. The acceleration of Comet Encke , 1950 .

[37]  A. Fitzsimmons,et al.  A spectroscopic survey of D-type asteroids , 1994 .

[38]  R. N. Clark,et al.  A LARGE-SCALE INTERACTIVE ONE-DIMENSIONAL ARRAY PROCESSING SYSTEM , 1980 .

[39]  Michael J. Gaffey,et al.  The 52-Color Asteroid Survey: Final Results and Interpretation , 1988 .

[40]  E. M. Shoemaker,et al.  Trojan asteroids - Populations, dynamical structure and origin of the L4 and L5 swarms , 1989 .

[41]  A. Tokunaga A reevaluation of the 20-micron magnitude system , 1984 .

[42]  H. P. Rickman,et al.  Asteroids comets meteors , 1984 .

[43]  D. Brownlee,et al.  Identification and Analysis of Cometary IDPs , 1994 .

[44]  Richard J. Rudy,et al.  A refined “standard” thermal model for asteroids based on observations of 1 Ceres and 2 Pallas , 1986 .

[45]  J. Dunlap,et al.  Minor planets. III - Lightcurves of a Trojan asteroid. , 1969 .

[46]  E. J. Oepik,et al.  The stray bodies in the solar system. i - survival of cometary nuclei and the asteroids. , 1963 .

[47]  P. Pravec,et al.  Lightcurves of 7 Near-Earth Asteroids , 1996 .

[48]  B. G. Marsden,et al.  (4015) 1979 VA = Comet Wilson-Harrington (1949 III) , 1992 .

[49]  D. Olsson-Steel,et al.  Identification of meteoroid streams from Apollo asteroids in the Adelaide radar orbit surveys , 1988 .

[50]  Harold F. Levison,et al.  From the Kuiper Belt to Jupiter-Family Comets: The Spatial Distribution of Ecliptic Comets☆ , 1997 .

[51]  D. J. Tholen,et al.  The Eight-Color Asteroid Survey: Results for 589 Minor Planets , 1985 .

[52]  William K. Hartmann,et al.  The relationship of active comets, 'extinct' comets, and dark asteroids , 1987 .

[53]  Peter R. Buseck,et al.  MATRICES OF CARBONACEOUS CHONDRITE METEORITES , 1993 .

[54]  E. Shoemaker,et al.  Earth-crossing asteroids - Orbital classes, collision rates with earth, and origin , 1979 .

[55]  E. Opik SYMPOSIUM: Comets: The survival of comets and cometary material , 1961 .

[56]  D. Allen The Method of Determining Infrared Diameters , 1971 .

[57]  M. Hanner Infrared Observations of Comets Halley and Wilson and Properties of the Grains , 1988 .

[58]  M. J. Mumma,et al.  Organic Composition of C/1999 S4 (LINEAR): A Comet Formed Near Jupiter? , 2001, Science.

[59]  Petr Pravec,et al.  Fast and Slow Rotation of Asteroids , 2000 .

[60]  L. Lebofsky,et al.  Radiometry and a thermal modeling of asteroids , 1989 .

[61]  W. Hartmann,et al.  Distant asteroids and Chiron , 1989 .

[62]  D. Jewitt,et al.  LOW ALBEDOS AMONG EXTINCT COMET CANDIDATES , 2001, astro-ph/0104478.

[63]  D. Jewitt,et al.  Colors and Spectra of Kuiper Belt Objects , 2001, astro-ph/0107277.

[64]  H. Campins,et al.  The bare nucleus of comet Neujmin 1 , 1987 .

[65]  E. Tedesco,et al.  Do comets evolve into asteroids - Evidence from physical studies , 1982 .

[66]  A. Nier,et al.  The thermal history of interplanetary dust particles collected in the Earth's stratosphere , 1993 .

[67]  R. Clark,et al.  Spectral properties of ice‐particulate mixtures and implications for remote sensing: 1. Intimate mixtures , 1984 .

[68]  Bonnie J. Buratti,et al.  Deep Space 1 photometry of the nucleus of Comet 19P/Borrelly , 2004 .

[69]  D. Tholen,et al.  Visible to Thermal-Infrared Spectrophotometry of a Possible Inactive Cometary Nucleus , 2001 .

[70]  H. Campins,et al.  Observational Constraints On Surface Characteristics Of Comet Nuclei , 2002 .

[71]  Robert H. Brown,et al.  Constraints on the surface composition of Trojan asteroids from near-infrared (0.8–4.0 μm) spectroscopy , 2003 .

[72]  Alan Bieler Chamberlin,et al.  Analysis of POSS Images of Comet-Asteroid Transition Object 107P/1949 W1 (Wilson-Harrington) , 1997 .

[73]  E. Opik THE SURVIVAL OF COMETS AND COMETARY MATERIAL , 1961 .

[74]  G. Flynn Atmospheric entry heating: A criterion to distinguish between asteroidal and cometary sources of interplanetary dust , 1989 .

[75]  H. Zook,et al.  Orbital evolution of dust particles from comets and asteroids , 1992 .

[76]  D. Brownlee,et al.  Reflectance spectroscopy of interplanetary dust particles , 1996 .

[77]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[78]  G. Wetherill End Products of Cometary Evolution: Cometary Origin of Earth-Crossing Bodies of Asteroidal Appearance , 1989 .

[79]  M. Belton,et al.  Long-Term Evolution of Rotational States and Nongravitational Effects for Halley-like Cometary Nuclei , 1995 .

[80]  P. Weissman Diversity of Comets: Formation Zones and Dynamical Paths , 1999 .

[81]  John W. Fowler,et al.  The IRAS Minor Planet Survey , 1992 .

[82]  Richard P. Binzel,et al.  Keck observations of near-Earth asteroids in the thermal infrared , 2003 .

[83]  L. Lara,et al.  The Surface of Cometary Nulcei Related Minor Icy Bodies , 2002 .

[84]  D. Tholen,et al.  The eight-color asteroid survey - Standard stars , 1982 .

[85]  P. Hardersen Near-IR reflectance spectroscopy of asteroids and study of the thermal history of the main asteroid belt , 2003 .

[86]  Markku Poutanen,et al.  Photoelectric observations of asteroids 3, 24, 60, 261, and 863 , 1989 .

[87]  D. Matson,et al.  Radiometry of near-earth asteroids. , 1989, The Astronomical journal.

[88]  John T. Rayner,et al.  SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .

[89]  L. McFadden The Comet — Asteroid Transition : Recent Telescopic Observations , 1994 .

[90]  Michael J. Gaffey,et al.  Spectral reflectance characteristics of the meteorite classes , 1976 .

[91]  Jan H. Oort,et al.  The structure of the cloud of comets surrounding the Solar System and a hypothesis concerning its origin , 1950 .

[92]  E. Dotto,et al.  Detailed phase function of comet 28P/Neujmin 1 , 2001 .

[93]  I. Williams,et al.  The Geminid meteor stream and asteroid 3200 Phaethon , 1993 .

[94]  Alan W. Harris,et al.  Asteroids in the Thermal Infrared , 2002 .

[95]  W. Bottke,et al.  Origin and Evolution of Near-Earth Objects , 2002 .

[96]  D. Jewitt From Kuiper Belt object to cometary nucleus , 2002 .

[97]  T. Owen,et al.  The Composition of Centaur 5145 Pholus , 1998 .

[98]  D. Hughes,et al.  The ‘Geminid’ asteroid (1983 TB) and its orbital evolution , 1984 .

[99]  M J Gaffey,et al.  Phyllosilicate Absorption Features in Main-Belt and Outer-Belt Asteroid Reflectance Spectra , 1989, Science.

[100]  G. Wetherill Cometary Versus Asteroidal Origin of Chondritic Meteorites , 1971 .

[101]  F. Whipple 1983 TB and the Geminid Meteors , 1983 .

[102]  M. Bailey,et al.  Dynamical evolution of Halley-type comets , 1996 .

[103]  G. Hahn,et al.  Asteroids in cometary orbits , 1985 .

[104]  Harold F. Levison,et al.  Origin and Evolution of the Unusual Object 1996 PW: Asteroids from the Oort Cloud? , 1997 .

[105]  Alessandro Morbidelli,et al.  Orbital and temporal distributions of meteorites originating in the asteroid belt , 1998 .

[106]  R. Jedicke,et al.  Debiased Orbital and Absolute Magnitude Distribution of the Near-Earth Objects , 2002 .

[107]  R. L. Newburn,et al.  Comets in the post-Halley era , 1991 .

[108]  M. Bailey,et al.  Dynamical evolution of cometary asteroids , 1998 .

[109]  Carle M. Pieters,et al.  Comparison of asteroid and meteorite spectra - Classification by principal component analysis , 1992 .

[110]  T. Gehrels,et al.  Physical studies of minor planets , 1971 .

[111]  R. Binzel,et al.  Origins for the Near-Earth Asteroids , 1992, Science.

[112]  R. H. Brown,et al.  Observations of Comet 19P/Borrelly by the Miniature Integrated Camera and Spectrometer Aboard Deep Space 1 , 2002, Science.

[113]  S. Larson,et al.  Near-Earth Asteroid Search Programs , 2002 .