Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction

[1]  Zhe Zhang,et al.  Transfer hydrogenation of nitroarenes with hydrazine at near-room temperature catalysed by a MoO2 catalyst , 2016 .

[2]  In-yeal Lee,et al.  Non-degenerate n-type doping by hydrazine treatment in metal work function engineered WSe2 field-effect transistor , 2015, Nanotechnology.

[3]  Gautam Gupta,et al.  Catalytic Activity in Lithium-Treated Core–Shell MoOx/MoS2 Nanowires , 2015 .

[4]  Gautam Gupta,et al.  Chemical Vapor Deposition Synthesized Atomically Thin Molybdenum Disulfide with Optoelectronic-Grade Crystalline Quality. , 2015, ACS nano.

[5]  Shuhong Yu,et al.  An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation , 2015, Nature Communications.

[6]  D. Xie,et al.  Electron-doping of graphene-based devices by hydrazine , 2014 .

[7]  Gautam Gupta,et al.  Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. , 2014, Nature materials.

[8]  Thomas F. Jaramillo,et al.  Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials , 2014 .

[9]  Yi Cui,et al.  Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. , 2014, ACS nano.

[10]  Charlie Tsai,et al.  Tuning the MoS₂ edge-site activity for hydrogen evolution via support interactions. , 2014, Nano letters.

[11]  Haotian Wang,et al.  Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction , 2013, Proceedings of the National Academy of Sciences.

[12]  B. Fang,et al.  MoS2 Nanosheets: A Designed Structure with High Active Site Density for the Hydrogen Evolution Reaction , 2013 .

[13]  Fei Meng,et al.  Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. , 2013, Journal of the American Chemical Society.

[14]  Sang‐Woo Kim,et al.  Hydrazine-based n-type doping process to modulate Dirac point of graphene and its application to complementary inverter , 2013 .

[15]  Arnold J. Forman,et al.  Bridging the Gap Between Bulk and Nanostructured Photoelectrodes: The Impact of Surface States on the Electrocatalytic and Photoelectrochemical Properties of MoS2 , 2013 .

[16]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[17]  Desheng Kong,et al.  Synthesis of MoS2 and MoSe2 films with vertically aligned layers. , 2013, Nano letters.

[18]  G. Eda,et al.  Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution. , 2012, Nature materials.

[19]  T. Jaramillo,et al.  Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. , 2012, Nature materials.

[20]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[21]  Xile Hu,et al.  Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts , 2011 .

[22]  T. Jaramillo,et al.  Core-shell MoO3-MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. , 2011, Nano letters.

[23]  Guosong Hong,et al.  MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. , 2011, Journal of the American Chemical Society.

[24]  G. Teeter,et al.  n-Type transparent conducting films of small molecule and polymer amine doped single-walled carbon nanotubes. , 2011, ACS nano.

[25]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[26]  H. Gasteiger,et al.  Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes , 2010 .

[27]  D. Late,et al.  MoS2 and WS2 analogues of graphene. , 2010, Angewandte Chemie.

[28]  Brian D. James,et al.  Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production , 2009 .

[29]  E. Aydil,et al.  Strong electronic coupling in two-dimensional assemblies of colloidal PbSe quantum dots. , 2009, ACS nano.

[30]  L. Mai,et al.  From MoO3 nanobelts to MoO2 nanorods: structure transformation and electrical transport. , 2009, ACS nano.

[31]  Edward T. Samulski,et al.  Exfoliated Graphene Separated by Platinum Nanoparticles , 2008 .

[32]  G. Eda,et al.  Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. , 2008, Nature nanotechnology.

[33]  Barbara K. Hughes,et al.  Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. , 2008, Journal of the American Chemical Society.

[34]  Cherie R. Kagan,et al.  Alignment, Electronic Properties, Doping, and On-Chip Growth of Colloidal PbSe Nanowires , 2007 .

[35]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[36]  Dmitri V Talapin,et al.  PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors , 2005, Science.

[37]  I. Chorkendorff,et al.  Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution , 2005 .

[38]  Jacob Bonde,et al.  Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. , 2005, Journal of the American Chemical Society.

[39]  P. Avouris,et al.  Charge transfer induced polarity switching in carbon nanotube transistors. , 2005, Nano letters.

[40]  Jiaguo Yu,et al.  Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[41]  V. Bulović,et al.  1.3 μm to 1.55 μm Tunable Electroluminescence from PbSe Quantum Dots Embedded within an Organic Device , 2003 .

[42]  Z. Ye,et al.  Growth of N-doped p-type ZnO films using ammonia as dopant source gas , 2003 .

[43]  B. V. Tilak,et al.  Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H , 2002 .

[44]  J. Dumesic,et al.  Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water , 2002, Nature.

[45]  Juhyoun Kwak,et al.  Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles , 2001, Nature.

[46]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[47]  Malcolm L. H. Green,et al.  Partial oxidation of methane to synthesis gas using carbon dioxide , 1991, Nature.

[48]  L. Kubler,et al.  Use of multilayer techniques for XPS identification of various nitrogen environments in the Si/NH3 system , 1991 .

[49]  S. Morrison,et al.  Single-layer MoS2 , 1986 .

[50]  S. Behal,et al.  The reactivity of MoS2 single crystal edge planes , 1985 .

[51]  A. Lerf,et al.  Reversible topotactic redox reactions of layered dichalcogenides , 1975 .

[52]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[53]  J. Bockris,et al.  Hydrogen Evolution Reaction on Copper, Gold, Molybdenum, Palladium, Rhodium, and Iron Mechanism and Measurement Technique under High Purity Conditions , 1957 .

[54]  M. Szwarc The dissociation energy of the N-N bond in hydrazine , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[55]  Shengbai Zhang,et al.  Molecular doping of ZnO by ammonia: a possible shallow acceptor , 2015 .

[56]  Yi Cui,et al.  Electrochemical Tuning of MoS 2 Nanoparticles on Three-Dimensional Substrate for E ffi cient Hydrogen Evolution , 2014 .

[57]  D. Cummins SYNTHESIS OF MOLYBDENUM OXIDE NANOWIRES AND THEIR FACILE CONVERSION TO MOLYBDENUM SULFIDE , 2009 .

[58]  J. Nørskov,et al.  Hydrogen evolution on nano-particulate transition metal sulfides. , 2008, Faraday discussions.

[59]  F. Besenbacher,et al.  Size-dependent structure of MoS2 nanocrystals. , 2007, Nature nanotechnology.

[60]  Jens R. Rostrup-Nielsen,et al.  Hydrogen and Synthesis gas by Steam- and CO2 reforming , 2002 .

[61]  R. R. Haering,et al.  Structural destabilization induced by lithium intercalation in MoS2 and related compounds , 1983 .

[62]  G. Rao,et al.  Intercalation in Layered Transition Metal Dichalcogenides , 1979 .