Maneuver-Aided Active Satellite Tracking Using Six-DOF Optimal Dynamic Inversion Control

A generalized inter-satellite tracking problem, maneuver-aided active satellite tracking, is addressed here. An active satellite has uncooperative maneuver, which shortens the tracking window and worsens the tracking precision. For tracking an active target satellite, a spacecraft maneuver-aided tracking strategy (SMATS) is proposed. Consisting of a robust tracking algorithm, an osculating-orbit-based coordinate matching scheme, a six-degree-of-freedom (six-DOF) maneuver control law and a transfer function of tracking attitude, the proposed approach can not only achieve precise tracking, but also keep a chaser satellite autonomously staying with the desired position and attitude to guarantee the tracking continuity. Based on sufficient stability conditions derived from system error analysis, a six-DOF optimal dynamic inversion control (ODIC) law is developed. As a precise nonlinear optimal solution, it provides the most adequate control performance with minimum impact to the tracking result. Both formation and hovering keeping of active satellites are simulated to illustrate the efficiency of the proposed SMATS and the advantages of the ODIC law.

[1]  Frank R. Chavez,et al.  Relative Orbit Element Estimation for Satellite Navigation , 2005 .

[2]  Moteaal Asadi Shirzi,et al.  Active tracking using Intelligent Fuzzy Controller and kernel-based algorithm , 2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011).

[3]  K. Xiong,et al.  Adaptive robust extended Kalman filter for nonlinear stochastic systems , 2008 .

[4]  João Araújo,et al.  Nonlinear Dynamic Inversion-based Guidance and Control for a Pinpoint Mars Entry , 2008 .

[5]  Zhou Jun,et al.  Relative Navigation Based on UKF for Multiple Spacecraft Formation Flying , 2004 .

[6]  Jan Albert Mulder,et al.  Reentry Flight Controller Design Using Nonlinear Dynamic Inversion , 2003 .

[7]  Jing Zhongliang,et al.  Dynamic optimal sliding-mode control for six-DOF follow-up robust tracking of active satellite , 2011 .

[8]  Naira Hovakimyan,et al.  Visual Tracking of a Maneuvering Target , 2006 .

[9]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[10]  B. Agrawal,et al.  Novel Expressions of Equations of Relative Motion and Control in Keplerian Orbits , 2009 .

[11]  U. Fayyad,et al.  Comments on " Unbiased Converted Measurements for Tracking " , 2022 .

[12]  Naira Hovakimyan,et al.  Active Control of Visual Sensor for Aerial Tracking , 2006 .

[13]  Naira Hovakimyan,et al.  Adaptive Disturbance Rejection Controller for Visual Tracking of a Maneuvering Target , 2007 .

[14]  P. A. M. Abusali,et al.  Hybrid precise orbit determination strategy by global positioning system tracking , 2004 .

[15]  F. Markley,et al.  Autonomous navigation using landmark and intersatellite data , 1984 .

[16]  Hari B. Hablani,et al.  Autonomous Inertial Relative Navigation with Sight-Line-Stabilized Sensors for Spacecraft Rendezvous , 2009 .

[17]  Mark L. Psiaki,et al.  Modeling, Analysis, and Simulation of GPS Carrier Phase for Spacecraft Relative Navigation , 2005 .

[18]  Jeongrae Kim,et al.  Error Analysis of a Low-Low Satellite-to-Satellite Tracking Mission , 2002 .

[19]  Mark L. Psiaki,et al.  Autonomous Orbit Determination for Two Spacecraft from Relative Position Measurements , 1998 .

[20]  Mark L. Psiaki,et al.  High-Altitude Satellite Relative Navigation Using Carrier-Phase Differential Global Positioning System Techniques , 2007 .

[21]  R. Culp Satellite-to-satellite orbit determination using minimum, discrete range and range-rate data only , 1984 .

[22]  David B. Doman,et al.  Dynamic inversion-based adaptive/reconfigurable control of the X-33 on ascent , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[23]  Zhongliang Jing,et al.  Redundant adaptive robust tracking of active satellite and error evaluation , 2010 .

[24]  Penina Axelrad,et al.  Formation Design in Eccentric Orbits Using Linearized Equations of Relative Motion , 2006 .

[25]  Y. Bar-Shalom,et al.  Unbiased converted measurements for tracking , 1998 .

[26]  K. Alfriend,et al.  Evaluation and Comparison of Relative Motion Theories , 2005 .

[27]  David K. Geller,et al.  Relative Angles-Only Navigation and Pose Estimation for Autonomous Orbital Rendezvous , 2006 .

[28]  Wen-Hua Chen,et al.  Nonlinear Disturbance Observer-Enhanced Dynamic Inversion Control of Missiles , 2003 .

[29]  B. Gunter,et al.  Relative Orbital Element Estimation and Observability Analysis for Formation Flying Satellites using Inter-Satellite Range Measurements Only , 2010 .

[30]  George H. Born,et al.  Autonomous Interplanetary Orbit Determination Using Satellite-to-Satellite Tracking , 2007 .

[31]  Yang Cheng,et al.  Sparse Gauss-Hermite Quadrature Filter with Application to Spacecraft Attitude Estimation , 2011 .

[32]  S.C. Stubberud,et al.  An adaptive Gaussian sum approach for maneuver tracking , 2005, 2005 IEEE Aerospace Conference.

[33]  Daniel J. Scheeres,et al.  Analytical Nonlinear Propagation of Uncertainty in the Two-Body Problem , 2012 .

[34]  K. Alfriend,et al.  State Transition Matrix of Relative Motion for the Perturbed Noncircular Reference Orbit , 2003 .

[35]  S. Kawase Intersatellite tracking methods for clustered geostationary satellites , 1990 .

[36]  S. Koteswara Rao,et al.  IMM - Unscented Kalman Filter based tracking of maneuvering targets using active sonar measurements , 2011, 2011 International Conference on Communications and Signal Processing.

[37]  John Valasek,et al.  PRELIMINARY RESULTS OF VEHICLE FORMATION CONTROL USING DYNAMIC INVERSION , 2004 .

[38]  Pini Gurfil,et al.  Cyclic Spacecraft Formations: Relative Motion Control Using Line-of-Sight Measurements Only , 2007 .

[39]  Hanxin Zhang,et al.  Modified unscented Kalman filtering and its application in autonomous satellite navigation , 2009 .

[40]  Chongzhao Han,et al.  Comments on "Unbiased converted measurements for tracking" , 2004 .

[41]  R. Broucke,et al.  Solution of the Elliptic Rendezvous Problem with the Time as Independent Variable , 2003 .