Characterisation of the electrochemical redox behaviour of Pt electrodes by potentiodynamic electrochemical impedance spectroscopy

Multi-frequency ac responses of Pt in aqueous solutions of sulphuric and perchloric acids have been characterised in cycles of Pt oxide anodic formation and cathodic reduction as functions of electrode potential, using the two orders frequency range below 1 kHz, where the double layer responded jointly with Faradaic processes. The potentiodynamic impedance spectra were fitted to an equivalent circuit, which contained double-layer capacitance in parallel with charge transfer resistance, R, and constant phase element (CPE). Double-layer capacitance has shown minima (20–25 μF cm−2 in 0.5 M H2SO4 and 25–35 μF cm−2 in 1 M HClO4) in the double-layer region and more than twofold increase in the platinum oxidation region. R−1 and CPE have shown maxima in the regions of platinum oxidation and reduction. Potentiodynamic curves of raw impedance data were also self-descriptive in monitoring platinum oxidation and reduction in both solutions and in presence of chloride.

[1]  O. Petrii,et al.  Real surface area measurements in electrochemistry , 1991 .

[2]  A. Bondarenko,et al.  Potentiodynamic electrochemical impedance spectroscopy. Copper underpotential deposition on gold , 2003 .

[3]  Potentiodynamic electrochemical impedance spectroscopy of silver on platinum in underpotential and overpotential deposition , 2003, cond-mat/0310449.

[4]  A. Bondarenko,et al.  Multiparametric electrochemical characterisation of Te-Cu-Pb atomic three-layer structure deposition on polycrystalline gold , 2006 .

[5]  M. Łukaszewski,et al.  Dissolution of noble metals and their alloys studied by electrochemical quartz crystal microbalance , 2006 .

[6]  A. Bond,et al.  A unified approach to trace analysis and evaluation of electrode kinetics with fast Fourier transform electrochemical instrumentation , 1998 .

[7]  V. Climent,et al.  Determination of the entropy of formation of the Pt(111)∣ perchloric acid solution interface. Estimation of the entropy of adsorbed hydrogen and OH species , 2008 .

[8]  T. Jacob Theoretical investigations on the potential-induced formation of Pt-oxide surfaces , 2007 .

[9]  Alireza Zolfaghari,et al.  Capacitance of the double-layer at polycrystalline Pt electrodes bearing a surface-oxide film , 2002 .

[10]  W. O'grady,et al.  Determination of O and OH adsorption sites and coverage in situ on Pt electrodes from Pt L(2,3) X-ray absorption spectroscopy. , 2005, The journal of physical chemistry. B.

[11]  Shyam S. Kocha,et al.  The Impact of Cycle Profile on PEMFC Durability , 2007 .

[12]  A. Bondarenko,et al.  Multiparametric characterisation of metal-chalcogen atomic multilayer assembly by potentiodynamic electrochemical impedance spectroscopy , 2008 .

[13]  B. Conway,et al.  Electrochemical oxide film formation at noble metals as a surface-chemical process , 1995 .

[14]  Gregory Jerkiewicz,et al.  Comprehensive study of the growth of thin oxide layers on Pt electrodes under well-defined temperature, potential, and time conditions , 2006 .

[15]  Thomas F. Fuller,et al.  Modeling of PEM fuel cell Pt/C catalyst degradation , 2008 .

[16]  A. Nishikata,et al.  Effect of halogen ions on platinum dissolution under potential cycling in 0.5 M H2SO4 solution , 2007 .

[17]  K. Juodkazis,et al.  Alternative view of anodic surface oxidation of noble metals , 2006 .

[18]  A. Bondarenko,et al.  Potentiodynamic Electrochemical Impedance Spectroscopy , 2004 .

[19]  T. Pajkossy,et al.  Measurement of adsorption rates of anions on Au(111) electrodes by impedance spectroscopy , 2002 .

[20]  V. Climent,et al.  New understanding of the nature of OH adsorption on Pt(111) electrodes , 2007 .

[21]  C. M. Pettit,et al.  Analysis of experimental constraints and variables for time resolved detection of Fourier transform electrochemical impedance spectra , 2004 .

[22]  Alexey L. Pomerantsev,et al.  Progress in chemometrics research , 2005 .

[23]  J. Franc,et al.  Growth and Properties of Oxide Films on Platinum I. EIS and X-Ray Photoelectron Spectroscopy Studies , 2006 .

[24]  W. Gu,et al.  Durable PEM Fuel Cell Electrode Materials: Requirements and Benchmarking Methodologies , 2006 .

[25]  J. Butler,et al.  The mechanism of electrolytic processes. Part V. The adsorption and desorption of hydrogen at platinum electrodes , 1938 .

[26]  David A. Harrington,et al.  Simulation of anodic Pt oxide growth , 1997 .

[27]  Dieter M. Kolb,et al.  Double layer capacitance of the platinum group metals in the double layer region , 2007 .

[28]  A. Wiȩckowski,et al.  Specific Adsorption of a Bisulfate Anion on a Pt(111) Electrode. Ultrahigh Vacuum Spectroscopic and Cyclic Voltammetric Study , 1996 .

[29]  A. Bondarenko,et al.  Potentiodynamic Electrochemical Impedance Spectroscopy for Solid State Chemistry , 2003 .

[30]  Jean Lessard,et al.  Surface-oxide growth at platinum electrodes in aqueous H2SO4 ☆: Reexamination of its mechanism through combined cyclic-voltammetry, electrochemical quartz-crystal nanobalance, and Auger electron spectroscopy measurements , 2004 .

[31]  Deborah J. Myers,et al.  Effect of voltage on platinum dissolution : Relevance to polymer electrolyte fuel cells , 2006 .

[32]  D. Harrington,et al.  An ac voltammetry study of Pt oxide growth , 1997 .

[33]  E. Sibert,et al.  Electrosorption impedance on Pt(111) in sulphuric media and nature of the “unusual” state , 2001 .

[34]  J. Weissmüller,et al.  Adsorbate effects on the surface stress–charge response of platinum electrodes , 2008 .

[35]  A. Bondarenko,et al.  Potentiodynamic electrochemical impedance spectroscopy: lead underpotential deposition on tellurium , 2004 .

[36]  A. Bondarenko,et al.  Variable Mott-Schottky plots acquisition by potentiodynamic electrochemical impedance spectroscopy , 2005 .

[37]  Mahlon Wilson,et al.  Scientific aspects of polymer electrolyte fuel cell durability and degradation. , 2007, Chemical reviews.

[38]  K. Uosaki,et al.  SFG study on potential-dependent structure of water at Pt electrode/electrolyte solution interface , 2008 .

[39]  Geping Yin,et al.  Understanding and Approaches for the Durability Issues of Pt-Based Catalysts for PEM Fuel Cell , 2007 .

[40]  Dieter M. Kolb,et al.  Double layer capacitance of Pt(111) single crystal electrodes , 2001 .

[41]  U. Stimming,et al.  Anion adsorption from sulfuric acid solutions on Pt(111) single crystal electrodes , 1997 .

[42]  Edward F. Holby,et al.  Instability of Supported Platinum Nanoparticles in Low-Temperature Fuel Cells , 2007 .

[43]  A. Bondarenko,et al.  Potentiodynamic electrochemical impedance spectroscopy of lead upd on polycrystalline gold and on selenium atomic underlayer , 2005 .