Siphons in Chemical Reaction Networks

Siphons in a chemical reaction system are subsets of the species that have the potential of being absent in a steady state. We present a characterization of minimal siphons in terms of primary decomposition of binomial ideals, we explore the underlying geometry, and we demonstrate the effective computation of siphons using computer algebra software. This leads to a new method for determining whether given initial concentrations allow for various boundary steady states.

[1]  Eduardo Sontag,et al.  A Petri Net Approach to Persistence Analysis in Chemical Reaction Networks , 2007 .

[2]  David Angeli,et al.  Translation-invariant monotone systems, and a global convergence result for enzymatic futile cycles ☆ , 2008 .

[3]  Eduardo Sontag,et al.  A Petri net approach to the study of persistence in chemical reaction networks. , 2006, Mathematical biosciences.

[4]  Alicia Dickenstein,et al.  Combinatorics of binomial primary decomposition , 2008, 0803.3846.

[5]  Bjarke Hammersholt Roune,et al.  The Slice Algorithm for irreducible decomposition of monomial ideals , 2007, J. Symb. Comput..

[6]  J. Hedrick,et al.  Observer design for a class of nonlinear systems , 1994 .

[7]  Michael Joswig,et al.  polymake: a Framework for Analyzing Convex Polytopes , 2000 .

[8]  Jeremy Gunawardena,et al.  The geometry of multisite phosphorylation. , 2008, Biophysical journal.

[9]  David F. Anderson,et al.  Global Asymptotic Stability for a Class of Nonlinear Chemical Equations , 2007, SIAM J. Appl. Math..

[10]  David F. Anderson,et al.  The Dynamics of Weakly Reversible Population Processes near Facets , 2010, SIAM J. Appl. Math..

[11]  Deborah Monique,et al.  Authors' addresses , 2004 .

[12]  Thomas Kahle,et al.  Decompositions of binomial ideals , 2009, 0906.4873.

[13]  David F. Anderson,et al.  Persistence of deterministic population processes and the Global Attractor Conjecture , 2009 .

[14]  Alicia Dickenstein,et al.  Toric dynamical systems , 2007, J. Symb. Comput..

[15]  Gian-Carlo Rota,et al.  Mathematical Essays in honor of Gian-Carlo Rota , 1998 .

[16]  Bernd Sturmfels,et al.  Lattice Walks and Primary Decomposition , 1998 .

[17]  Eduardo D. Sontag Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction , 2001, IEEE Trans. Autom. Control..

[18]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[19]  D. Siegel,et al.  Global stability of complex balanced mechanisms , 2000 .

[20]  Gheorghe Craciun,et al.  Algebraic methods for inferring biochemical networks: A maximum likelihood approach , 2009, Comput. Biol. Chem..

[21]  B. Sturmfels,et al.  Binomial Ideals , 1994, alg-geom/9401001.

[22]  Roberto Cordone,et al.  Enumeration algorithms for minimal siphons in Petri nets based on place constraints , 2005, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.