A dual analyzer for real-time impedance and noise spectroscopy of nanoscale devices.

This paper introduces a simple portable dual analyzer which allows real-time ac-impedance measurements and noise spectroscopic analysis simultaneously, employing one or two data acquisition systems together with a low noise current-to-voltage preamplifier. The input signal composed of numerous selected frequencies of sinusoidal voltages with a dc bias was applied to a device under the test (DUT): single walled carbon nanotube field effect transistors (SWCNT-FETs). Each frequency component, ranging from 1 to 46.4 kHz, was successfully mapped to a Nyquist plot using the background of the electrical noise power spectrum. It is, thus, clearly demonstrated that this dual analyzer enables the real-time ac-impedance analysis and the frequency response of the carrier transport in the SWCNT-FETs as a DUT.

[1]  Tetsuo Shimizu,et al.  Electrical conductivity measurements of a multi‐walled carbon nanotube , 2005 .

[2]  S. F. Liu,et al.  Electrical transport and electroluminescence properties of n-ZnO single nanowires , 2006 .

[3]  A Searle,et al.  Real time impedance plots with arbitrary frequency components , 1999, Physiological measurement.

[4]  Zhiyong Fan,et al.  Electrical properties of ZnO nanowire field effect transistors characterized with scanning probes , 2005 .

[5]  Jiaxiong Wang Electrical conductivity of double stranded DNA measured with ac impedance spectroscopy , 2008 .

[6]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[7]  Yoji Sakurai,et al.  Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries , 2002 .

[8]  T. M. Nahir,et al.  Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed Edited by Evgenij Barsoukov (Texas Instruments Inc.) and J. Ross Macdonald (University of North Carolina, Chapel Hill). John Wiley & Sons, Inc.: Hoboken, NJ. 2005. xvii + 596 pp. $125.00. ISBN 0471-64749-7. , 2005 .

[9]  S. Roth,et al.  Electrical Transport Through Individual Vanadium Pentoxide Nanowires , 2000 .

[10]  J. M. Hawkins,et al.  Some field experience with battery impedance measurement as a useful maintenance tool , 1994, Proceedings of Intelec 94.

[11]  Erich Sackmann,et al.  Fast impedance spectroscopy: General aspects and performance study for single ion channel measurements , 2000 .

[12]  F. Hooge 1/f noise sources , 1994 .

[13]  Masa Ishigami,et al.  Hooge’s constant for carbon nanotube field effect transistors , 2006 .

[14]  Yoo,et al.  An electrochemical impedance measurement technique employing Fourier transform , 2000, Analytical chemistry.

[15]  Mitsuhiro Katayama,et al.  Four-point probe resistance measurements using PtIr-coated carbon nanotube tips. , 2007, Nano letters.

[16]  Sangtae Kim,et al.  A direct measurement of the local resistances in a ZnO tetrapod by means of impedance spectroscopy: The role of the junction in the overall resistance , 2008 .

[17]  Sanjay Mathur,et al.  Electrical properties of individual tin oxide nanowires contacted to platinum electrodes , 2007 .

[18]  G. Ghibaudo,et al.  Low-frequency noise in strained SiGe core-shell nanowire p-channel field effect transistors , 2010 .

[19]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[20]  T. Choi,et al.  Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method , 2006 .

[21]  G. Ghibaudo,et al.  Low-frequency noise characterization of n- and p-MOSFET's with ultrathin oxynitride gate films , 1996, IEEE Electron Device Letters.

[22]  A. K. Tyagi,et al.  Enhanced conductivity in graphene layers and at their edges , 2006 .

[23]  Low-noise top-gate graphene transistors , 2009, 0908.3304.

[24]  J. Brophy Crystalline Imperfections and1fNoise , 1959 .

[25]  E. Snow,et al.  1∕f noise in single-walled carbon nanotube devices , 2004 .

[26]  Noriaki Sano,et al.  Application of dielectrophoresis to fabrication of carbon nanohorn gas sensor , 2006 .

[27]  Peter Händel,et al.  Fundamental quantum 1/f noise in semiconductor devices , 1994 .

[28]  Inhwa Jung,et al.  Tunable electrical conductivity of individual graphene oxide sheets reduced at "low" temperatures. , 2008, Nano letters.

[29]  Hidekazu Tanaka,et al.  Conductance measurement of a DNA network in nanoscale by point contact current imaging atomic force microscopy , 2005 .

[30]  Jing Wang,et al.  Sensitivity and complex impedance of nanometer zirconia thick film humidity sensors , 2009 .

[31]  Yew Tong Yeow,et al.  Extraction of MOSFET threshold voltage, series resistance, effective channel length, and inversion layer mobility from small-signal channel conductance measurement , 2001 .

[32]  H. Dai,et al.  Individual single-wall carbon nanotubes as quantum wires , 1997, Nature.

[33]  Gi-Ryon Kim,et al.  Development of PC-based and portable high speed impedance analyzer for biosensor , 2005 .

[34]  E. Karden,et al.  A frequency-domain approach to dynamical modeling of electrochemical power sources , 2002 .

[35]  A. Jin,et al.  Hopping conduction in single ZnO nanowires , 2005 .

[36]  R. N. Schindler,et al.  A new impedance spectrometer for the investigation of electrochemical systems , 1992 .