An open source software for analysis of dynamic contrast enhanced magnetic resonance images: UMMPerfusion revisited

BackgroundPerfusion imaging has become an important image based tool to derive the physiological information in various applications, like tumor diagnostics and therapy, stroke, (cardio-) vascular diseases, or functional assessment of organs. However, even after 20 years of intense research in this field, perfusion imaging still remains a research tool without a broad clinical usage. One problem is the lack of standardization in technical aspects which have to be considered for successful quantitative evaluation; the second problem is a lack of tools that allow a direct integration into the diagnostic workflow in radiology.ResultsFive compartment models, namely, a one compartment model (1CP), a two compartment exchange (2CXM), a two compartment uptake model (2CUM), a two compartment filtration model (2FM) and eventually the extended Toft’s model (ETM) were implemented as plugin for the DICOM workstation OsiriX. Moreover, the plugin has a clean graphical user interface and provides means for quality management during the perfusion data analysis. Based on reference test data, the implementation was validated against a reference implementation. No differences were found in the calculated parameters.ConclusionWe developed open source software to analyse DCE-MRI perfusion data. The software is designed as plugin for the DICOM Workstation OsiriX. It features a clean GUI and provides a simple workflow for data analysis while it could also be seen as a toolbox providing an implementation of several recent compartment models to be applied in research tasks. Integration into the infrastructure of a radiology department is given via OsiriX. Results can be saved automatically and reports generated automatically during data analysis ensure certain quality control.

[1]  F. Jalbert,et al.  Osirix : logiciel libre d’imagerie médicale , 2008 .

[2]  David L Buckley,et al.  Measurement of single kidney function using dynamic contrast‐enhanced MRI: Comparison of two models in human subjects , 2006, Journal of magnetic resonance imaging : JMRI.

[3]  J. Fütterer,et al.  ESUR prostate MR guidelines 2012 , 2012, European Radiology.

[4]  Steven P Sourbron,et al.  Classic models for dynamic contrast‐enhanced MRI , 2013, NMR in biomedicine.

[5]  D. Balvayb,et al.  Perfusion and vascular permeability : Basic concepts and measurement in DCE-CT and DCE-MRI , 2013 .

[6]  M. Neurath,et al.  Dynamic Contrast-Enhanced Ultrasound (DCE-US) for the Characterization of Hepatocellular Carcinoma and Cholangiocellular Carcinoma , 2014, Ultraschall in der Medizin.

[7]  Bernd Hamm,et al.  Dynamic contrast-enhanced magnetic resonance imaging and pharmacokinetic models in prostate cancer , 2011, European Radiology.

[8]  Steven Sourbron,et al.  Compartmental modelling for magnetic resonance renography. , 2010, Zeitschrift fur medizinische Physik.

[9]  Emanuele Neri,et al.  ESR Position Paper on Imaging Biobanks , 2015, Insights into Imaging.

[10]  C. Thng,et al.  Fundamentals of tracer kinetics for dynamic contrast‐enhanced MRI , 2011, Journal of magnetic resonance imaging : JMRI.

[11]  D L Buckley,et al.  Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability , 2012, Physics in medicine and biology.

[12]  Robert Luypaert,et al.  Validity of perfusion parameters obtained using the modified Tofts model: A simulation study , 2011, Magnetic resonance in medicine.

[13]  María J. Ledesma-Carbayo,et al.  DCE@urLAB: a dynamic contrast-enhanced MRI pharmacokinetic analysis tool for preclinical data , 2013, BMC Bioinformatics.

[14]  Stephen Travis Pope,et al.  A cookbook for using the model-view controller user interface paradigm in Smalltalk-80 , 1988 .

[15]  L. Schad,et al.  Pre-clinical functional Magnetic Resonance Imaging Part II: The heart. , 2014, Zeitschrift fur medizinische Physik.

[16]  Lothar R. Schad,et al.  UMMPerfusion: an Open Source Software Tool Towards Quantitative MRI Perfusion Analysis in Clinical Routine , 2013, Journal of Digital Imaging.

[17]  T. Leiner,et al.  Optimized pharmacokinetic modeling for the detection of perfusion differences in skeletal muscle with DCE-MRI: effect of contrast agent size. , 2010, Medical physics.

[18]  Nacim Betrouni,et al.  Computer-assisted diagnosis of prostate cancer using DCE-MRI data: design, implementation and preliminary results , 2008, International Journal of Computer Assisted Radiology and Surgery.

[19]  Volker Schmid,et al.  Quantitative Analysis of Dynamic Contrast-Enhanced and Diffusion-Weighted Magnetic Resonance Imaging for Oncology in R , 2011 .

[20]  Matthew S Davenport,et al.  Reproducibility of dynamic contrast-enhanced MR imaging. Part I. Perfusion characteristics in the female pelvis by using multiple computer-aided diagnosis perfusion analysis solutions. , 2013, Radiology.

[21]  P S Tofts,et al.  The importance of AIF ROI selection in DCE-MRI renography: reproducibility and variability of renal perfusion and filtration. , 2010, European journal of radiology.

[22]  Craig B. Markwardt,et al.  Non-linear Least Squares Fitting in IDL with MPFIT , 2009, 0902.2850.

[23]  Steven Sourbron,et al.  The Akaike information criterion in DCE-MRI: Does it improve the haemodynamic parameter estimates? , 2012, Physics in medicine and biology.

[24]  Osman Ratib,et al.  OsiriX: An Open-Source Software for Navigating in Multidimensional DICOM Images , 2004, Journal of Digital Imaging.

[25]  Michael Ingrisch,et al.  Tracer-kinetic modeling of dynamic contrast-enhanced MRI and CT: a primer , 2013, Journal of Pharmacokinetics and Pharmacodynamics.

[26]  Tobias Schaeffter,et al.  Reproducibility of dynamic contrast-enhanced MR imaging: why we should care. , 2013, Radiology.

[27]  Arvid Lundervold,et al.  ssessment of 3 D DCE-MRI of the kidneys using non-rigid image registration nd segmentation of voxel time courses rank , 2009 .

[28]  A. Ritzl,et al.  [User friendly analysis of MR investigations of the cerebral perfusion: Windows(R)-based image processing]. , 2002, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[29]  Erlend Hodneland,et al.  Segmentation-Driven Image Registration-Application to 4D DCE-MRI Recordings of the Moving Kidneys , 2014, IEEE Transactions on Image Processing.

[30]  Maximilian F Reiser,et al.  Temporal Constraints in Renal Perfusion Imaging With a 2-Compartment Model , 2008, Investigative radiology.

[31]  Wei Wei,et al.  Dependence of DCE-MRI biomarker values on analysis algorithm , 2015, PloS one.

[32]  L. Schad,et al.  Pre-clinical functional Magnetic Resonance Imaging Part I: The kidney. , 2014, Zeitschrift fur medizinische Physik.

[33]  Richard Frayne,et al.  PerfTool: A software platform for investigating bolus‐tracking perfusion imaging quantification strategies , 2007, Journal of magnetic resonance imaging : JMRI.

[34]  G. Weisser,et al.  Integrating Mac Systems into a Medical IT Infrastructure : Creating an affordable radiology workstation with OsiriX , 2007 .

[35]  L. Schad,et al.  Functional imaging of acute kidney injury at 3 Tesla: investigating multiple parameters using DCE-MRI and a two-compartment filtration model. , 2015, Zeitschrift fur medizinische Physik.

[36]  Daniel Lesnic,et al.  Fitting the two‐compartment model in DCE‐MRI by linear inversion , 2016, Magnetic resonance in medicine.

[37]  Hans-Jörg Wittsack,et al.  Benutzerfreundliche Auswertung von MR-Untersuchungen der zerebralen Perfusion: Windows®-basierte Bildverarbeitung , 2002 .

[38]  R. Lucht,et al.  Microcirculation and microvasculature in breast tumors: Pharmacokinetic analysis of dynamic MR image series , 2004, Magnetic resonance in medicine.

[39]  Maximilian F. Reiser,et al.  Functional renal MR imaging: an overview , 2007, Abdominal Imaging.

[40]  Gregory Z. Ferl,et al.  DATforDCEMRI: An R Package for Deconvolution Analysis and Visualization of DCE-MRI Data , 2011 .

[41]  Russell E. Jacobs,et al.  ROCKETSHIP: a flexible and modular software tool for the planning, processing and analysis of dynamic MRI studies , 2015, BMC Medical Imaging.

[42]  D. Magee,et al.  Comparison of the Diagnostic Performance of Four Quantitative Myocardial Perfusion Estimation Methods Used in Cardiac MR Imaging: CE-MARC Substudy. , 2015, Radiology.

[43]  Tong San Koh,et al.  Perfusion magnetic resonance imaging of the liver. , 2010, World journal of gastroenterology.

[44]  S. Sourbron Technical aspects of MR perfusion. , 2010, European journal of radiology.

[45]  I Gordon,et al.  Reproducibility of the aortic input function (AIF) derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the kidneys in a volunteer study. , 2009, European journal of radiology.

[46]  [Osirix: free and open-source software for medical imagery]. , 2008, Revue de stomatologie et de chirurgie maxillo-faciale.

[47]  E. Merkle,et al.  Inter‐ and intra‐rater reproducibility of quantitative dynamic contrast enhanced MRI using TWIST perfusion data in a uterine fibroid model , 2013, Journal of magnetic resonance imaging : JMRI.