A stochastic multidimensional scaling vector threshold model for the spatial representation of “pick any/n” data

This paper presents a new stochastic multidimensional scaling vector threshold model designed to analyze “pick any/n” choice data (e.g., consumers rendering buy/no buy decisions concerning a number of actual products). A maximum likelihood procedure is formulated to estimate a joint space of both individuals (represented as vectors) and stimuli (represented as points). The relevant psychometric literature concerning the spatial treatment of such binary choice data is reviewed. The nonlinear probit type model is described, as well as the conjugate gradient procedure used to estimate parameters. Results of Monte Carlo analyses investigating the performance of this methodology with synthetic choice data sets are presented. An application concerning consumer choices for eleven competitive brands of soft drinks is discussed. Finally, directions for future research are presented in terms of further applications and generalizing the model to accommodate three-way choice data.

[1]  D. Wise,et al.  A CONDITIONAL PROBIT MODEL FOR QUALITATIVE CHOICE: DISCRETE DECISIONS RECOGNIZING INTERDEPENDENCE AND HETEROGENEOUS PREFERENCES' , 1978 .

[2]  David Mautner Himmelblau,et al.  Applied Nonlinear Programming , 1972 .

[3]  Kurt Lewin,et al.  Level of aspiration. , 1944 .

[4]  Anders Christoffersson,et al.  Factor analysis of dichotomized variables , 1975 .

[5]  M. J. D. Powell,et al.  Restart procedures for the conjugate gradient method , 1977, Math. Program..

[6]  R. Courant Differential and Integral Calculus , 1935 .

[7]  W. DeSarbo Gennclus: New models for general nonhierarchical clustering analysis , 1982 .

[8]  Jan de Leeuw,et al.  Canonical analysis of categorical data , 1984 .

[9]  V. Rao,et al.  GENFOLD2: A set of models and algorithms for the general UnFOLDing analysis of preference/dominance data , 1984 .

[10]  W. DeSarbo,et al.  Three-way metric unfolding via alternating weighted least squares , 1985 .

[11]  D. G. Weeks,et al.  Restricted multidimensional scaling models , 1978 .

[12]  R. Clarke,et al.  Theory and Applications of Correspondence Analysis , 1985 .

[13]  Yoram Wind,et al.  Multiattribute decisions in marketing : a measurement approach , 1973 .

[14]  Donna L. Hoffman,et al.  Constructing MDS Joint Spaces from Binary Choice Data: A Multidimensional Unfolding Threshold Model for Marketing Research , 1987 .

[15]  C. Coombs A theory of data. , 1965, Psychology Review.

[16]  Wayne S. DeSarbo,et al.  A Constrained Unfolding Methodology for Product Positioning , 1986 .

[17]  P. McCullagh,et al.  Generalized Linear Models , 1972, Predictive Analytics.

[18]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[19]  Wayne S. DeSarbo,et al.  A Probabilistic Multidimensional Scaling Vector Model , 1986 .

[20]  K. Lancaster,et al.  Variety, equity, and efficiency , 1979 .

[21]  Bruce Bloxom,et al.  Constrained multidimensional scaling inN spaces , 1978 .

[22]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[23]  Hedley Rees,et al.  Limited-Dependent and Qualitative Variables in Econometrics. , 1985 .

[24]  Wayne S. DeSarbo,et al.  Simple and Weighted Unfolding Threshold Models for the Spatial Representation of Binary Choice Data , 1986 .

[25]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[26]  Michel Tenenhaus,et al.  An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying categorical multivariate data , 1985 .

[27]  Geert De Soete,et al.  A maximum likelihood method for fitting the wandering vector model , 1983 .

[28]  H. J. Einhorn The use of nonlinear, noncompensatory models in decision making. , 1970, Psychological bulletin.

[29]  Elliot Noma,et al.  Constraining Nonmetric Multidimensional Scaling Configurations. , 1977 .

[30]  S. Siegel,et al.  Level of aspiration and decision making. , 1957, Psychological review.

[31]  J. Kruskal,et al.  Candelinc: A general approach to multidimensional analysis of many-way arrays with linear constraints on parameters , 1980 .

[32]  J. Kruskal MULTILINEAR MODELS FOR DATA ANALYSIS , 1981 .

[33]  A. Morineau,et al.  Multivariate descriptive statistical analysis , 1984 .

[34]  E. Raymond Platig,et al.  Research and Analysis , 1968 .

[35]  George R. Franke,et al.  Correspondence Analysis: Graphical Representation of Categorical Data in Marketing Research , 1986 .

[36]  Gordon G. Bechtel,et al.  A scalar product model for the multidimensional scaling of choice , 1971 .

[37]  Joel Levine Joint-space analysis of “pick-any” data: Analysis of choices from an unconstrained set of alternatives , 1979 .

[38]  Joseph L. Zinnes,et al.  Theory and Methods of Scaling. , 1958 .

[39]  Kazuo Noda,et al.  A MODEL SELECTION APPROACH TO THE TWO-PHASE REGRESSION ESTIMATION AND THE HUMAN SENSITIVITY ANALYSIS IN URBAN ECOSYSTEM , 1983 .

[40]  D. J. Bartholomew,et al.  Factor Analysis for Categorical Data , 1980 .

[41]  H. Simon,et al.  Theories of Decision-Making in Economics and Behavioural Science , 1966 .

[42]  R. Shepard,et al.  A nonmetric variety of linear factor analysis , 1974 .

[43]  H. Akaike A new look at the statistical model identification , 1974 .

[44]  S. Addelman Orthogonal Main-Effect Plans for Asymmetrical Factorial Experiments , 1962 .

[45]  D. Lehmann Market research and analysis , 1979 .

[46]  H. Simon,et al.  Rationality as Process and as Product of Thought , 1978 .

[47]  W. DeSarbo,et al.  A Spatial Choice Model , 1983 .

[48]  G. M. Southward,et al.  Analysis of Categorical Data: Dual Scaling and Its Applications , 1981 .

[49]  B. Muthén Contributions to factor analysis of dichotomous variables , 1978 .

[50]  S. R. Searle Linear Models , 1971 .

[51]  R. Dawes SOCIAL SELECTION BASED ON MULTIDIMENSIONAL CRITERIA. , 1964, Journal of abnormal psychology.

[52]  H. Bozdogan Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions , 1987 .

[53]  D. McFadden Quantal Choice Analysis: A Survey , 1976 .

[54]  K. Lancaster A New Approach to Consumer Theory , 1966, Journal of Political Economy.

[55]  R. Darrell Bock,et al.  Fitting a response model forn dichotomously scored items , 1970 .

[56]  Erling B. Andersen,et al.  Discrete Statistical Models with Social Science Applications. , 1980 .

[57]  Patrick Slater,et al.  THE ANALYSIS OF PERSONAL PREFERENCES , 1960 .

[58]  Wayne S. DeSarbo,et al.  Three-Way Multivariate Conjoint Analysis , 1982 .

[59]  Lee G. Cooper,et al.  Two logit models for external analysis of preferences , 1983 .