Graph-based methods for analysing networks in cell biology

Availability of large-scale experimental data for cell biology is enabling computational methods to systematically model the behaviour of cellular networks. This review surveys the recent advances in the field of graph-driven methods for analysing complex cellular networks. The methods are outlined on three levels of increasing complexity, ranging from methods that can characterize global or local structural properties of networks to methods that can detect groups of interconnected nodes, called motifs or clusters, potentially involved in common elementary biological functions. We also briefly summarize recent approaches to data integration and network inference through graph-based formalisms. Finally, we highlight some challenges in the field and offer our personal view of the key future trends and developments in graph-based analysis of large-scale datasets.

[1]  Hai Hu,et al.  Assessing semantic similarity measures for the characterization of human regulatory pathways , 2006, Bioinform..

[2]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[3]  Ignacio Marín,et al.  Iterative Cluster Analysis of Protein Interaction Data , 2005, Bioinform..

[4]  Hamid Bolouri,et al.  A data integration methodology for systems biology. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Roded Sharan,et al.  Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Amarnath Gupta,et al.  PathSys: integrating molecular interaction graphs for systems biology , 2006, BMC Bioinformatics.

[7]  A Vázquez,et al.  The topological relationship between the large-scale attributes and local interaction patterns of complex networks , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[8]  F. Doyle,et al.  A benchmark for methods in reverse engineering and model discrimination: problem formulation and solutions. , 2004, Genome research.

[9]  D. Pe’er,et al.  Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data , 2003, Nature Genetics.

[10]  Matej Oresic,et al.  Data integration and visualization system for enabling conceptual biology , 2005, ISMB.

[11]  Doheon Lee,et al.  Architecture of basic building blocks in protein and domain structural interaction networks , 2005, Bioinform..

[12]  Wojciech Szpankowski,et al.  An efficient algorithm for detecting frequent subgraphs in biological networks , 2004, ISMB/ECCB.

[13]  Anton J. Enright,et al.  Detection of functional modules from protein interaction networks , 2003, Proteins.

[14]  Sebastian Wernicke,et al.  FANMOD: a tool for fast network motif detection , 2006, Bioinform..

[15]  Ernesto Estrada Virtual identification of essential proteins within the protein interaction network of yeast , 2005, Proteomics.

[16]  Robert Gentleman,et al.  Local modeling of global interactome networks , 2005 .

[17]  S. L. Wong,et al.  Combining biological networks to predict genetic interactions. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Sanjay Jain,et al.  Low degree metabolites explain essential reactions and enhance modularity in biological networks , 2005, BMC Bioinformatics.

[19]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[20]  M. Vidal,et al.  Effect of sampling on topology predictions of protein-protein interaction networks , 2005, Nature Biotechnology.

[21]  R. Albert Scale-free networks in cell biology , 2005, Journal of Cell Science.

[22]  Benno Schwikowski,et al.  human disease: Application to Hepatitis C virus infection , 2005 .

[23]  Dong Xu,et al.  Global protein function annotation through mining genome-scale data in yeast Saccharomyces cerevisiae. , 2004, Nucleic acids research.

[24]  Gregory W. Carter,et al.  Inferring network interactions within a cell , 2005, Briefings Bioinform..

[25]  Andreas Wagner,et al.  Reconstructing Pathways in Large Genetic Networks from Genetic Perturbations , 2004, J. Comput. Biol..

[26]  R. Milo,et al.  Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Igor Jurisica,et al.  Protein complex prediction via cost-based clustering , 2004, Bioinform..

[28]  Olga G. Troyanskaya,et al.  Putting microarrays in a context: Integrated analysis of diverse biological data , 2005, Briefings Bioinform..

[29]  T. Jaakkola,et al.  Validation and refinement of gene-regulatory pathways on a network of physical interactions , 2005, Genome Biology.

[30]  A. Giuliani,et al.  Functional essentiality from topology features in metabolic networks: A case study in yeast , 2005, FEBS letters.

[31]  Baldomero Oliva,et al.  PIANA: protein interactions and network analysis , 2006, Bioinform..

[32]  Emek Demir,et al.  Patikaweb: a Web interface for analyzing biological pathways through advanced querying and visualization , 2006, Bioinform..

[33]  William Stafford Noble,et al.  Kernel methods for predicting protein-protein interactions , 2005, ISMB.

[34]  Paul P. Wang,et al.  Advances to Bayesian network inference for generating causal networks from observational biological data , 2004, Bioinform..

[35]  Sarel J Fleishman,et al.  Comment on "Network Motifs: Simple Building Blocks of Complex Networks" and "Superfamilies of Evolved and Designed Networks" , 2004, Science.

[36]  B. Palsson,et al.  The model organism as a system: integrating 'omics' data sets , 2006, Nature Reviews Molecular Cell Biology.

[37]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[38]  Jason A. Papin,et al.  Reconstruction of cellular signalling networks and analysis of their properties , 2005, Nature Reviews Molecular Cell Biology.

[39]  E. Ziv,et al.  Inferring network mechanisms: the Drosophila melanogaster protein interaction network. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  T. Ideker,et al.  Modeling cellular machinery through biological network comparison , 2006, Nature Biotechnology.

[41]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[42]  Carsten Wiuf,et al.  Subnets of scale-free networks are not scale-free: sampling properties of networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Ziv Bar-Joseph,et al.  Evaluation of different biological data and computational classification methods for use in protein interaction prediction , 2006, Proteins.

[44]  Hiroyuki Kurata,et al.  A grid layout algorithm for automatic drawing of biochemical networks , 2005, Bioinform..

[45]  A. Hartemink Reverse engineering gene regulatory networks , 2005, Nature Biotechnology.

[46]  Frank Dudbridge,et al.  The Use of Edge-Betweenness Clustering to Investigate Biological Function in Protein Interaction Networks , 2005, BMC Bioinformatics.

[47]  Satoru Miyano,et al.  Estimating gene regulatory networks and protein-protein interactions of Saccharomyces cerevisiae from multiple genome-wide data , 2005, ECCB/JBI.

[48]  Benno Schwikowski,et al.  Discovering regulatory and signalling circuits in molecular interaction networks , 2002, ISMB.

[49]  M. Orešič,et al.  Pathways to the analysis of microarray data. , 2005, Trends in biotechnology.

[50]  Falk Schreiber,et al.  MAVisto: a tool for the exploration of network motifs , 2005, Bioinform..

[51]  Silvio C. E. Tosatto,et al.  Decomposing protein networks into domain-domain interactions , 2005, ECCB/JBI.

[52]  Matthew A. Hibbs,et al.  Discovery of biological networks from diverse functional genomic data , 2005, Genome Biology.

[53]  Peter Grindrod,et al.  Review of uses of network and graph theory concepts within proteomics , 2004, Expert review of proteomics.

[54]  Nicola J. Rinaldi,et al.  Computational discovery of gene modules and regulatory networks , 2003, Nature Biotechnology.

[55]  Patrik D'haeseleer,et al.  Genetic network inference: from co-expression clustering to reverse engineering , 2000, Bioinform..

[56]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[57]  Kyungsook Han,et al.  WebInterViewer: visualizing and analyzing molecular interaction networks , 2004, Nucleic Acids Res..

[58]  Leon Goldovsky,et al.  The net of life: reconstructing the microbial phylogenetic network. , 2005, Genome research.

[59]  T. Ideker,et al.  Systematic interpretation of genetic interactions using protein networks , 2005, Nature Biotechnology.

[60]  Tommi S. Jaakkola,et al.  Physical Network Models , 2004, J. Comput. Biol..

[61]  J. Collins,et al.  Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks , 2005, Nature Biotechnology.

[62]  Uri Alon,et al.  Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs , 2004, Bioinform..

[63]  An-Ping Zeng,et al.  Decomposition of metabolic network into functional modules based on the global connectivity structure of reaction graph , 2004, Bioinform..

[64]  Yigal D. Nochomovitz,et al.  Highly designable phenotypes and mutational buffers emerge from a systematic mapping between network topology and dynamic output. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Michael Lässig,et al.  Local graph alignment and motif search in biological networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[66]  L. Mirny,et al.  Protein complexes and functional modules in molecular networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Robert Gentleman,et al.  A graph-theoretic approach to testing associations between disparate sources of functional genomics data , 2004, Bioinform..

[68]  Mona Singh,et al.  Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps , 2005, ISMB.

[69]  L. Hood,et al.  A data integration methodology for systems biology: experimental verification. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Illés J. Farkas,et al.  CFinder: locating cliques and overlapping modules in biological networks , 2006, Bioinform..

[71]  Alfred O. Hero,et al.  Network constrained clustering for gene microarray data , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[72]  Patrik D'haeseleer,et al.  How does gene expression clustering work? , 2005, Nature Biotechnology.

[73]  W. Wong,et al.  Transitive functional annotation by shortest-path analysis of gene expression data , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Réka Albert,et al.  Conserved network motifs allow protein-protein interaction prediction , 2004, Bioinform..

[75]  S. L. Wong,et al.  Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network , 2005, Journal of biology.

[76]  Roded Sharan,et al.  QPath: a method for querying pathways in a protein-protein interaction network , 2006, BMC Bioinformatics.

[77]  Shoshana J. Wodak,et al.  Metabolic PathFinding: inferring relevant pathways in biochemical networks , 2005, Nucleic Acids Res..

[78]  Jason Weston,et al.  Motif-based protein ranking by network propagation , 2005, Bioinform..

[79]  Igor Jurisica,et al.  Functional topology in a network of protein interactions , 2004, Bioinform..

[80]  Alexander Rives,et al.  Modular organization of cellular networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[81]  Chiara Sabatti,et al.  Network component analysis: Reconstruction of regulatory signals in biological systems , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Zhenjun Hu,et al.  VisANT: data-integrating visual framework for biological networks and modules , 2005, Nucleic Acids Res..

[83]  M. Tyers,et al.  Osprey: a network visualization system , 2003, Genome Biology.

[84]  Alain Guénoche,et al.  Clustering proteins from interaction networks for the prediction of cellular functions , 2004, BMC Bioinformatics.

[85]  Jiawei Han,et al.  Mining coherent dense subgraphs across massive biological networks for functional discovery , 2005, ISMB.

[86]  Rainer Breitling,et al.  Graph-based iterative Group Analysis enhances microarray interpretation , 2004, BMC Bioinformatics.

[87]  Igor Jurisica,et al.  Efficient estimation of graphlet frequency distributions in protein-protein interaction networks , 2006, Bioinform..

[88]  Lan V. Zhang,et al.  Evidence for dynamically organized modularity in the yeast protein–protein interaction network , 2004, Nature.

[89]  Joël R. Pradines,et al.  Analyzing Protein Lists with Large Networks: Edge-Count Probabilities in Random Graphs with Given Expected Degrees , 2005, J. Comput. Biol..

[90]  Robert Gentleman,et al.  Network structures and algorithms in Bioconductor , 2005, Bioinform..

[91]  M. Vergassola,et al.  An evolutionary and functional assessment of regulatory network motifs , 2005, Genome Biology.

[92]  Igor Jurisica,et al.  Modeling interactome: scale-free or geometric? , 2004, Bioinform..

[93]  William Stafford Noble,et al.  Learning kernels from biological networks by maximizing entropy , 2004, ISMB/ECCB.

[94]  Satoru Miyano,et al.  Superiority of network motifs over optimal networks and an application to the revelation of gene network evolution , 2005, Bioinform..

[95]  Roded Sharan,et al.  Efficient Algorithms for Detecting Signaling Pathways in Protein Interaction Networks , 2006, J. Comput. Biol..

[96]  S. Shen-Orr,et al.  Superfamilies of Evolved and Designed Networks , 2004, Science.

[97]  A. Ruttenberg,et al.  Edge‐count probabilities for the identification of local protein communities and their organization , 2005, Proteins.

[98]  Mark Gerstein,et al.  Predicting interactions in protein networks by completing defective cliques , 2006, Bioinform..

[99]  M. Gerstein,et al.  Analyzing protein function on a genomic scale: the importance of gold-standard positives and negatives for network prediction. , 2004, Current opinion in microbiology.

[100]  L. Holm,et al.  Unraveling protein interaction networks with near-optimal efficiency , 2004, Nature Biotechnology.