Efficiency of a Kernel Density Estimator under an Autoregressive Dependence Model

Abstract The problem of estimating the probability density function of a strictly stationary process is considered. To study the effect of a dependence structure on the efficiency of a kernel density estimator, the mean integrated squared error (MISE) of the Fourier integral estimator (FIE) is derived on the assumption that the observed data are generated by a first-order autoregressive process. Numerical results for the normal and Cauchy densities show that even moderate departures from independence can lead to a considerable loss in efficiency of the FIE. In addition to efficiency considerations, the issue of determining an optimal smoothing parameter for the FIE under the autoregressive model is addressed.

[1]  J. Doob Stochastic processes , 1953 .

[2]  Hung T. Nguyen,et al.  Density Estimation in a Continuous-Time Stationary Markov Process , 1979 .

[3]  J. Gastwirth,et al.  The Behavior of Robust Estimators on Dependent Data , 1975 .

[4]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[5]  On the marginal distribution of a first order autoregressive process , 1984 .

[6]  H. Akaike Statistical predictor identification , 1970 .

[7]  H. L. Gray,et al.  On the Relationship between the S Array and the Box-Jenkins Method of ARMA Model Identification , 1981 .

[8]  R. Kronmal,et al.  An Introduction to the Implementation and Theory of Nonparametric Density Estimation , 1976 .

[9]  K. B. Davis Mean Integrated Square Error Properties of Density Estimates , 1977 .

[10]  E. Wegman Nonparametric Probability Density Estimation: I. A Summary of Available Methods , 1972 .

[11]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[12]  R. Tapia,et al.  Nonparametric Probability Density Estimation , 1978 .

[13]  The Asymptotic Distribution Theory of the Empiric CDF for Mixing Stochastic Processes , 1975 .

[14]  E. A. Sylvestre,et al.  Self Modeling Nonlinear Regression , 1972 .

[15]  L. Denby,et al.  Robust Estimation of the First-Order Autoregressive Parameter , 1979 .

[16]  Estimation of the Scaling Parameter for a Kernel-Type Density Estimate , 1981 .

[17]  Makoto Yamazato,et al.  Unimodality of Infinitely Divisible Distribution Functions of Class $L$ , 1978 .

[18]  J. Hart DATA‐BASED CHOICE OF THE SMOOTHING PARAMETER FOR A KERNEL DENSITY ESTIMATOR , 1985 .

[19]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[20]  G. Roussas Nonparametric estimation in Markov processes , 1969 .

[21]  Density estimation for linear processes , 1983 .

[22]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .