Numerically stable improved Chebyshev-Halley type schemes for matrix sign function

A general family of iterative methods including a free parameter is derived and proved to be convergent for computing matrix sign function under some restrictions on the parameter. Several special cases including global convergence behavior are dealt with. It is analytically shown that they are asymptotically stable. A variety of numerical experiments for matrices with different sizes is considered to show the effectiveness of the proposed members of the family.

[1]  S. R. Searle,et al.  On Deriving the Inverse of a Sum of Matrices , 1981 .

[2]  A. Laub,et al.  Rational iterative methods for the matrix sign function , 1991 .

[3]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[4]  Leiba Rodman,et al.  Algebraic Riccati equations , 1995 .

[5]  M. Sh. Misrikhanov,et al.  Matrix sign function in the problems of analysis and design of the linear systems , 2008 .

[6]  Fazlollah Soleymani,et al.  Several numerical methods for computing unitary polar factor of a matrix , 2016, Advances in Difference Equations.

[7]  N. Higham The matrix sign decomposition and its relation to the polar decomposition , 1994 .

[8]  Young Hee Geum,et al.  A multi-parameter family of three-step eighth-order iterative methods locating a simple root , 2010, Appl. Math. Comput..

[9]  J. D. Roberts,et al.  Linear model reduction and solution of the algebraic Riccati equation by use of the sign function , 1980 .

[10]  N. Higham Functions of Matrices: Theory and Computation (Other Titles in Applied Mathematics) , 2008 .

[11]  Fazlollah Soleymani,et al.  A fast convergent numerical method for matrix sign function with application in SDEs , 2015, J. Comput. Appl. Math..

[12]  Leang S. Shieh,et al.  Matrix sector functions and their applications to systems theory , 1984 .

[13]  Bruno Iannazzo,et al.  The Pade iterations for the matrix sign function and their reciprocals are optimal , 2010, 1011.1725.

[14]  A. A. Kutsenko,et al.  The matrix sign function for solving surface wave problems in homogeneous and laterally periodic elastic half-spaces , 2013, 1303.5114.

[15]  A. Laub,et al.  The matrix sign function , 1995, IEEE Trans. Autom. Control..

[16]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[17]  Frank-Dieter Filbir Computation of the structured stability radius via matrix sign function , 1994 .

[18]  Enrique S. Quintana-Ortí,et al.  Solving stable generalized Lyapunov equations with the matrix sign function , 1999, Numerical Algorithms.

[19]  Fazlollah Soleymani,et al.  Approximating the Matrix Sign Function Using a Novel Iterative Method , 2014 .

[20]  Federico Greco,et al.  A Padé family of iterations for the matrix sign function and related problems , 2012, Numer. Linear Algebra Appl..

[21]  Enrique S. Quintana-Ortí,et al.  Efficient algorithms for generalized algebraic Bernoulli equations based on the matrix sign function , 2007, Numerical Algorithms.

[22]  J. M. Gutiérrez,et al.  A family of Chebyshev-Halley type methods in Banach spaces , 1997, Bulletin of the Australian Mathematical Society.

[23]  Samuel N. Kamin,et al.  An Introduction to Programming with Mathematica ® : An introduction to Mathematica , 2005 .

[24]  J. L. Howland The sign matrix and the separation of matrix eigenvalues , 1983 .

[25]  Fazlollah Soleymani,et al.  A Novel Iterative Method for Polar Decomposition and Matrix Sign Function , 2015 .

[26]  Michael Trott The Mathematica GuideBook for Numerics , 2005 .