Concurrence and Foliations Induced by Some 1-Qubit Channels

We start with a short introduction to the roof concept. An elementary discussion of phase-damping channels shows the role of antilinear operators in representing their concurrences. A general expression for some concurrences is derived. We apply it to 1-qubit channels of length 2, getting the induced foliations of the state space, the optimal decompositions, and the entropy of a state with respect to these channels. For amplitude-damping channels one obtains an expression for the Holevo capacity allowing for easy numerical calculations.

[1]  Physical Review , 1965, Nature.

[2]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[3]  W. Thirring,et al.  FROM RELATIVE ENTROPY TO ENTROPY , 1985 .

[4]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[5]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[6]  A. Uhlmann,et al.  Optimal decompositions of quantum states with respect to entropy , 1996 .

[7]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[8]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[9]  Michael D. Westmoreland,et al.  Optimal signal ensembles , 1999, quant-ph/9912122.

[10]  P. Algoet,et al.  ONE-TO-ONE PARAMETRIZATION OF QUANTUM CHANNELS , 1999 .

[11]  Terhal,et al.  Entanglement of formation for isotropic states , 2000, Physical review letters.

[12]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[13]  S. Szarek,et al.  An Analysis of Completely-Positive Trace-Preserving Maps on 2x2 Matrices , 2000, quant-ph/0101003.

[14]  A. Uhlmann Fidelity and Concurrence of conjugated states , 1999, quant-ph/9909060.

[15]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[16]  Andrew G. Glen,et al.  APPL , 2001 .

[17]  Christopher King,et al.  Minimal entropy of states emerging from noisy quantum channels , 2001, IEEE Trans. Inf. Theory.

[18]  M. Ruskai Inequalities for quantum entropy: A review with conditions for equality , 2002, quant-ph/0205064.

[19]  D. Petz Monotonicity of quantum relative entropy revisited , 2002, quant-ph/0209053.

[20]  A. Uhlmann,et al.  Broken symmetries in the entanglement of formation , 2002, quant-ph/0209081.

[21]  G. Illies,et al.  Communications in Mathematical Physics , 2004 .