A fictitious domain approach for the simulation of dense suspensions

Low Reynolds number concentrated suspensions do exhibit an intricate physics which can be partly unraveled by the use of numerical simulation. To this end, a Lagrange multiplier-free fictitious domain approach is described in this work. Unlike some methods recently proposed, the present approach is fully Eulerian and therefore does not need any transfer between the Eulerian background grid and some Lagrangian nodes attached to particles. Lubrication forces between particles play an important role in the suspension rheology and have been properly accounted for in the model. A robust and effective lubrication scheme is outlined which consists in transposing the classical approach used in Stokesian Dynamics to our present direct numerical simulation. This lubrication model has also been adapted to account for solid boundaries such as walls. Contact forces between particles are modeled using a classical Discrete Element Method (DEM), a widely used method in granular matter physics. Comprehensive validations are presented on various one-particle, two-particle or three-particle configurations in a linear shear flow as well as some O ( 10 3 ) and O ( 10 4 ) particle simulations.

[1]  T. Schwager,et al.  Computational Granular Dynamics: Models and Algorithms , 2005 .

[2]  R. Temam Une méthode d'approximation de la solution des équations de Navier-Stokes , 1968 .

[3]  Nicos Martys,et al.  Study of a dissipative particle dynamics based approach for modeling suspensions , 2005 .

[4]  Jean-Yves Delenne,et al.  A 3D DEM-LBM approach for the assessment of the quick condition for sands , 2009 .

[5]  A. Wachs,et al.  Numerical simulation of particle sedimentation in shear-thinning fluids with a fictitious domain method , 2006 .

[6]  Howard H. Hu,et al.  Direct simulation of fluid particle motions , 1992 .

[7]  A. Staniforth,et al.  Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .

[8]  Mark Carlson,et al.  Rigid fluid: animating the interplay between rigid bodies and fluid , 2004, SIGGRAPH 2004.

[9]  Philippe Gondret,et al.  Bouncing motion of spherical particles in fluids , 2002 .

[10]  Djamel Lakehal,et al.  Interface tracking towards the direct simulation of heat and mass transfer in multiphase flows , 2002 .

[11]  Wing Kam Liu,et al.  Particulate flow simulations using lubrication theory solution enrichment , 2003 .

[12]  A. Ladd,et al.  Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[14]  S. Torquato Random Heterogeneous Materials , 2002 .

[15]  Krishnaswamy Nandakumar,et al.  A fictitious domain formulation for flows with rigid particles: A non-Lagrange multiplier version , 2007, J. Comput. Phys..

[16]  Nhan Phan-Thien,et al.  Viscoelastic mobility problem of a system of particles , 2002 .

[17]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[18]  A. Lefebvre Fluid-Particle simulations with FreeFem++ , 2007 .

[19]  N. Phan-Thien,et al.  Lubrication approximation in completed double layer boundary element method , 2000 .

[20]  Haecheon Choi,et al.  Immersed boundary method for flow around an arbitrarily moving body , 2006, J. Comput. Phys..

[21]  Daniel D. Joseph,et al.  Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows , 1994, Journal of Fluid Mechanics.

[22]  R. Davé,et al.  MEASUREMENTS OF COLLISIONAL PROPERTIES OF SPHERES USING HIGH-SPEED VIDEO ANALYSIS , 1997 .

[23]  E. J. Hinch,et al.  Shear-induced dispersion in a dilute suspension of rough spheres , 1996, Journal of Fluid Mechanics.

[24]  Zhaosheng Yu,et al.  A direct-forcing fictitious domain method for particulate flows , 2007, J. Comput. Phys..

[25]  Bertrand Maury,et al.  Apparent viscosity of a mixture of a Newtonian fluid and interacting particles , 2005 .

[26]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[27]  A. Ladd,et al.  Lattice-Boltzmann Simulations of Particle-Fluid Suspensions , 2001 .

[28]  T. E. TezduyarAerospace,et al.  3d Simulation of Fluid-particle Interactions with the Number of Particles Reaching 100 , 1996 .

[29]  Zhaosheng Yu,et al.  A fictitious domain method for particulate flows with heat transfer , 2006, J. Comput. Phys..

[30]  Ching-Yuang Huang Semi-Lagrangian Advection Schemes and Eulerian WKL Algorithms , 1994 .

[31]  G. Batchelor,et al.  The hydrodynamic interaction of two small freely-moving spheres in a linear flow field , 1972, Journal of Fluid Mechanics.

[32]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[33]  Rodolfo Bermejo,et al.  The Conversion of Semi-Lagrangian Advection Schemes to Quasi-Monotone Schemes , 1992 .

[34]  Thomas J. Dougherty,et al.  A Mechanism for Non‐Newtonian Flow in Suspensions of Rigid Spheres , 1959 .

[35]  J. Stickel,et al.  FLUID MECHANICS AND RHEOLOGY OF DENSE SUSPENSIONS , 2001 .

[36]  Jeffrey F. Morris,et al.  A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow , 2009 .

[37]  R. Glowinski,et al.  A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows , 2000 .

[38]  Anthony Wachs,et al.  A DEM-DLM/FD method for direct numerical simulation of particulate flows: Sedimentation of polygonal isometric particles in a Newtonian fluid with collisions , 2009 .

[39]  M. Maxey,et al.  Localized force representations for particles sedimenting in Stokes flow , 2001 .

[40]  G. Grest,et al.  Granular flow down an inclined plane: Bagnold scaling and rheology. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  B. Maury,et al.  A PENALTY METHOD FOR THE SIMULATION OF FLUID - RIGID BODY INTERACTION , 2005 .

[42]  Jacques Periaux,et al.  Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies , 1998 .

[43]  John F. Brady,et al.  STOKESIAN DYNAMICS , 2006 .

[44]  Wook Ryol Hwang,et al.  Direct simulations of particle suspensions in a viscoelastic fluid in sliding bi-periodic frames , 2004 .

[45]  David R. Owen,et al.  Combined three‐dimensional lattice Boltzmann method and discrete element method for modelling fluid–particle interactions with experimental assessment , 2010 .

[46]  D. Wolf,et al.  Force Schemes in Simulations of Granular Materials , 1996 .

[47]  Martin R. Maxey,et al.  Numerical simulations of random suspensions at finite Reynolds numbers , 2003 .

[48]  N. Patankar A formulation for fast computations of rigid particulate flows , 2001 .

[49]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[50]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[51]  Sarah L. Dance,et al.  Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow , 2003 .

[52]  John F. Brady,et al.  Dynamic simulation of sheared suspensions. I. General method , 1984 .

[53]  John F. Brady,et al.  Accelerated Stokesian Dynamics simulations , 2001, Journal of Fluid Mechanics.

[54]  Daniel Bonn,et al.  Flow of wet granular materials. , 2005, Physical review letters.

[55]  Farhang Radjai,et al.  Discrete-element modeling of granular materials , 2011 .

[56]  Martin R. Maxey,et al.  Dynamics of concentrated suspensions of non-colloidal particles in Couette flow , 2010, Journal of Fluid Mechanics.

[57]  Jeffrey F. Morris,et al.  A Physical Introduction to Suspension Dynamics: Preface , 2011 .

[58]  David J. Jeffrey,et al.  Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow , 1984, Journal of Fluid Mechanics.

[59]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[60]  M. Uhlmann An immersed boundary method with direct forcing for the simulation of particulate flows , 2005, 1809.08170.

[61]  Hulsen,et al.  Toward the computational rheometry of filled polymeric fluids , 2006 .

[62]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results , 1993, Journal of Fluid Mechanics.

[63]  P. Coussot,et al.  Rheophysical classification of concentrated suspensions and granular pastes , 1999 .

[64]  David J. Jeffrey,et al.  The pressure moments for two rigid spheres in low-Reynolds-number flow , 1993 .

[65]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[66]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[67]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation , 1993, Journal of Fluid Mechanics.

[68]  Z. Feng,et al.  Proteus: a direct forcing method in the simulations of particulate flows , 2005 .

[69]  Jordi Blasco,et al.  A Fictitious Domain, parallel numerical method for rigid particulate flows , 2009, J. Comput. Phys..

[70]  F. Peters,et al.  Experimental signature of the pair trajectories of rough spheres in the shear-induced microstructure in noncolloidal suspensions. , 2011, Physical review letters.

[71]  Kevin P. Galvin,et al.  Solid–solid contacts due to surface roughness and their effects on suspension behaviour , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[72]  R. Glowinski,et al.  A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .

[73]  J. R. Smart,et al.  The influence of surface roughness on the particle-pair distribution function of dilute suspensions of non-colloidal spheres in simple shear flow , 1997, Journal of Fluid Mechanics.

[74]  Martin R. Maxey,et al.  Simulation of concentrated suspensions using the force-coupling method , 2010, J. Comput. Phys..

[75]  John F. Brady,et al.  The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation , 1985, Journal of Fluid Mechanics.

[76]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[77]  N. Patankar,et al.  A fast computation technique for the direct numerical simulation of rigid particulate flows , 2005 .

[78]  Howard H. Hu,et al.  Rheology of a suspension of particles in viscoelastic fluids , 2001 .

[79]  Mathieu Martin,et al.  A numerical method for fully resolved simulation (FRS) of rigid particle-flow interactions in complex flows , 2009, J. Comput. Phys..

[80]  Sangtae Kim,et al.  Microhydrodynamics: Principles and Selected Applications , 1991 .

[81]  Grégory Beaume Modélisation et simulation numérique de l'écoulement d'un fluide complexe , 2008 .

[82]  Louis J. Durlofsky,et al.  Dynamic simulation of hydrodynamically interacting particles , 1987, Journal of Fluid Mechanics.