A combination of serum leucine-rich α-2-glycoprotein 1, CA19-9 and interleukin-6 differentiate biliary tract cancer from benign biliary strictures

[1]  S. Gayther,et al.  Profiling signatures of ovarian cancer tumour suppression using 2D-DIGE and 2D-LC-MS/MS with tandem mass tagging. , 2011, Journal of proteomics.

[2]  Tushar Patel,et al.  Targeting the IL-6 Dependent Phenotype Can Identify Novel Therapies for Cholangiocarcinoma , 2010, PloS one.

[3]  X. Xiao,et al.  Characterization of apolipoprotein A-I as a potential biomarker for cholangiocarcinoma. , 2009, European journal of cancer care.

[4]  Kiyoshi Ikeda,et al.  Up-regulation of the expression of leucine-rich α2-glycoprotein in hepatocytes by the mediators of acute-phase response , 2009, Biochemical and Biophysical Research Communications.

[5]  J. Lee,et al.  The Current State of Proteomics in GI Oncology , 2008, Digestive Diseases and Sciences.

[6]  K. Lindor,et al.  Utility of serum tumor markers, imaging, and biliary cytology for detecting cholangiocarcinoma in primary sclerosing cholangitis , 2008, Hepatology.

[7]  David T. Kaleta,et al.  Enhanced Detection of Low Abundance Human Plasma Proteins Using a Tandem IgY12-SuperMix Immunoaffinity Separation Strategy*S , 2008, Molecular & Cellular Proteomics.

[8]  Y. S. Kim,et al.  Diagnostic Utility of Interleukin-6 (IL-6) for Primary Bile Duct Cancer and Changes in Serum IL-6 Levels Following Photodynamic Therapy , 2007, The American Journal of Gastroenterology.

[9]  S. Chari Diagnosis of autoimmune pancreatitis using its five cardinal features: introducing the Mayo Clinic's HISORt criteria , 2007, Journal of Gastroenterology.

[10]  Steven C Cunningham,et al.  Cholangiocarcinoma: Thirty-one-Year Experience With 564 Patients at a Single Institution , 2007, Annals of surgery.

[11]  H. Kato,et al.  Plasma proteomics of pancreatic cancer patients by multi-dimensional liquid chromatography and two-dimensional difference gel electrophoresis (2D-DIGE): Up-regulation of leucine-rich alpha-2-glycoprotein in pancreatic cancer , 2007, Journal of Chromatography B.

[12]  T. Patel,et al.  Interleukin-6 contributes to growth in cholangiocarcinoma cells by aberrant promoter methylation and gene expression. , 2006, Cancer research.

[13]  Ronald J. Moore,et al.  Evaluation of Multiprotein Immunoaffinity Subtraction for Plasma Proteomics and Candidate Biomarker Discovery Using Mass Spectrometry*S , 2006, Molecular & Cellular Proteomics.

[14]  C. Scarlett,et al.  Proteomic profiling of cholangiocarcinoma: Diagnostic potential of SELDI‐TOF MS in malignant bile duct stricture , 2006, Hepatology.

[15]  M. Kendrick,et al.  Hepatic resection in the treatment of hilar cholangiocarcinoma. , 2006, Advances in surgery.

[16]  T. Patel,et al.  Interleukin-6 decreases senescence and increases telomerase activity in malignant human cholangiocytes. , 2006, Life sciences.

[17]  Santosh B Reddy,et al.  Current approaches to the diagnosis and treatment of cholangiocarcinoma , 2006, Current gastroenterology reports.

[18]  E. Hurt,et al.  The role of IL-6 and STAT3 in inflammation and cancer. , 2005, European journal of cancer.

[19]  G. Gores,et al.  The Value of Serum CA 19-9 in Predicting Cholangiocarcinomas in Patients with Primary Sclerosing Cholangitis , 2005, Digestive Diseases and Sciences.

[20]  M. Waterfield,et al.  Proteomic analysis of redox‐ and ErbB2‐dependent changes in mammary luminal epithelial cells using cysteine‐ and lysine‐labelling two‐dimensional difference gel electrophoresis , 2005, Proteomics.

[21]  Troels Z. Kristiansen,et al.  A Proteomic Analysis of Human Bile* , 2004, Molecular & Cellular Proteomics.

[22]  H. El‐Serag,et al.  The epidemiology of cholangiocarcinoma. , 2004, Seminars in liver disease.

[23]  K. Lindor,et al.  Incidence and Risk Factors for Cholangiocarcinoma in Primary Sclerosing Cholangitis , 2004, American Journal of Gastroenterology.

[24]  K. McGlynn,et al.  Rising incidence of intrahepatic cholangiocarcinoma in the United States: a true increase? , 2004, Journal of hepatology.

[25]  H. Thomas,et al.  Changing international trends in mortality rates for liver, biliary and pancreatic tumours. , 2002, Journal of hepatology.

[26]  H. Thomas,et al.  Guidelines for the diagnosis and treatment of cholangiocarcinoma: consensus document , 2002, Gut.

[27]  A. Bergquist,et al.  Hepatic and extrahepatic malignancies in primary sclerosing cholangitis. , 2002, Journal of hepatology.

[28]  Rainer Cramer,et al.  Evaluation of Two-dimensional Differential Gel Electrophoresis for Proteomic Expression Analysis of a Model Breast Cancer Cell System* , 2002, Molecular & Cellular Proteomics.

[29]  M. Gonen,et al.  Staging, Resectability, and Outcome in 225 Patients With Hilar Cholangiocarcinoma , 2001, Annals of surgery.

[30]  T. V. van Gulik,et al.  Incidence of benign lesions in patients resected for suspicious hilar obstruction , 2001, The British journal of surgery.

[31]  J. Lunz,et al.  Growth control of human biliary epithelial cells by interleukin 6, hepatocyte growth factor, transforming growth factor β1, and activin a: Comparison of a cholangiocarcinoma cell line with primary cultures of non‐neoplastic biliary epithelial cells , 2000, Hepatology.

[32]  N. Chalasani,et al.  Cholangiocarcinoma in patients with primary sclerosing cholangitis: A multicenter case‐control study , 2000, Hepatology.

[33]  G. Gores,et al.  The utility of CA 19-9 in the diagnoses of cholangiocarcinoma in patients without primary sclerosing cholangitis , 2000, American Journal of Gastroenterology.

[34]  W. Bechstein,et al.  Extended resections for hilar cholangiocarcinoma. , 1999, Annals of surgery.

[35]  G. Gores,et al.  Inhibition of interleukin 6–mediated mitogen‐activated protein kinase activation attenuates growth of a cholangiocarcinoma cell line , 1999, Hepatology.

[36]  G. Gores,et al.  Biliary tract cancers. , 1999, The New England journal of medicine.

[37]  Y. Nakanuma,et al.  Relationship between interleukin‐6 and proliferation and differentiation in cholangiocarcinoma , 1998, Histopathology.

[38]  James S Goydos,et al.  Marked elevation of serum interleukin-6 in patients with cholangiocarcinoma: validation of utility as a clinical marker. , 1998, Annals of surgery.

[39]  A. Ekbom,et al.  Is there an excess risk for colorectal cancer in patients with ulcerative colitis and concomitant primary sclerosing cholangitis? A population based study , 1997, Gut.

[40]  K. Lillemoe,et al.  Cholangiocarcinoma. A spectrum of intrahepatic, perihilar, and distal tumors. , 1996, Annals of surgery.

[41]  Å. Danielsson,et al.  Natural history and prognostic factors in 305 Swedish patients with primary sclerosing cholangitis. , 1996, Gut.

[42]  L. Eriksson,et al.  Primary sclerosing cholangitis and ulcerative colitis: Evidence for increased neoplastic potential , 1995, Hepatology.

[43]  A. Watanabe,et al.  Interleukin‐6 functions as an autocrine growth factor in a cholangiocarcinoma cell line , 1994, Journal of gastroenterology and hepatology.

[44]  W. Steinberg The clinical utility of the CA 19-9 tumor-associated antigen. , 1990, The American journal of gastroenterology.

[45]  R. Chapman,et al.  Primary sclerosing cholangitis: a review of its clinical features, cholangiography, and hepatic histology. , 1980, Gut.

[46]  F. Vleggaar,et al.  High lifetime risk of cancer in primary sclerosing cholangitis. , 2009, Journal of hepatology.

[47]  W. Greenhalf,et al.  Confounding effect of obstructive jaundice in the interpretation of proteomic plasma profiling data for pancreatic cancer. , 2009, Journal of proteome research.

[48]  G. Gores,et al.  Sustained IL-6/STAT-3 signaling in cholangiocarcinoma cells due to SOCS-3 epigenetic silencing. , 2007, Gastroenterology.

[49]  P. Tangkijvanich,et al.  Diagnostic role of serum interleukin 6 and CA 19-9 in patients with cholangiocarcinoma. , 2004, Hepato-gastroenterology.

[50]  R. Chapman Risk factors for biliary tract carcinogenesis. , 1999, Annals of oncology : official journal of the European Society for Medical Oncology.