Heteroepitaxial Growth of GaAs/Ge Buffer Layer on Si for Metamorphic InGaAs Lasers

We demonstrate heteroepitaxial growth of GaAs/Ge buffer layers for fabricating 1.3-μm range metamorphic InGaAs-based multiple quantum well (MQW) lasers in which the Ge buffer layer is grown using a metal-organic Ge precursor, iso-butyl germane, in a conventional metalorganic vapor phase epitaxy reactor. This enables us to grow Ge and GaAs buffer layers in the same reactor seamlessly. Transmission electron microscopy and X-ray diffraction analyses indicate that dislocations are well confined at the Ge/Si interface. Furthermore, thermal-cycle annealing significantly improves crystalline quality at the GaAs/Ge interface, resulting in higher photoluminescence intensity from the MQWs on the buffer layers. key words: heteroepitaxial growth, Ge buffer, MOVPE, Si substrate

[1]  John E. Bowers,et al.  Quantum dot lasers for silicon photonics [Invited] , 2015 .

[2]  Salah M. Bedair,et al.  Defect reduction in GaAs epitaxial layers using a GaAsP‐InGaAs strained‐layer superlattice , 1985 .

[3]  M. Carroll,et al.  Thin Film InP Epitaxy on Si (001) Using Selective Aspect Ratio Trapping , 2009 .

[4]  Ge homoepitaxial growth by metal–organic chemical vapor deposition using t-C4H9GeH3 , 2014 .

[5]  Y. Arakawa,et al.  Metal organic chemical vapor deposition growth of high density InAs/Sb:GaAs quantum dots on Ge/Si substrate and its electroluminescence at room temperature , 2014 .

[6]  M. Yamaguchi,et al.  Thermal annealing effects of defect reduction in GaAs on Si substrates , 1990 .

[7]  J. Hartmann,et al.  Anti-phase boundaries–Free GaAs epilayers on “quasi-nominal” Ge-buffered silicon substrates , 2015 .

[8]  Yasuhiko Arakawa,et al.  Quantum dot lasers for silicon photonics , 2016, 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS).

[9]  M. Carroll,et al.  Low-Defect-Density Ge Epitaxy on Si(001) Using Aspect Ratio Trapping and Epitaxial Lateral Overgrowth , 2009 .

[10]  C. Ferrari,et al.  MOVPE growth and characterization of heteroepitaxial germanium on silicon using iBuGe as precursor , 2016 .

[11]  T. Kurosaki,et al.  50-Gb/s Direct Modulation of a 1.3-μm InGaAlAs-Based DFB Laser With a Ridge Waveguide Structure , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[12]  V. Haven,et al.  High-efficiency GaAs/Ge monolithic tandem solar cells , 1988, IEEE Electron Device Letters.

[13]  Kouji Nakahara,et al.  Direct Modulation at 56 and 50 Gb/s of 1.3- $\mu $ m InGaAlAs Ridge-Shaped-BH DFB Lasers , 2015, IEEE Photonics Technology Letters.

[14]  Kazumi Wada,et al.  High-quality Ge epilayers on Si with low threading-dislocation densities , 1999 .

[15]  Isabelle Sagnes,et al.  p and n-type germanium layers grown using iso-butyl germane in a III-V metal-organic vapor phase epitaxy reactor , 2011 .

[16]  N. El-Masry,et al.  Defect reduction in GaAs grown by molecular beam epitaxy using different superlattice structures , 1986 .

[17]  Mitsuo Kawabe,et al.  Self-Annihilation of Antiphase Boundary in GaAs on Si(100) Grown by Molecular Beam Epitaxy , 1987 .

[18]  M. Carroll,et al.  Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping , 2007 .

[19]  Yuji Yamamoto,et al.  Low threading dislocation density Ge deposited on Si (100) using RPCVD , 2011 .

[20]  I. J. Fritz,et al.  Electrical and optical studies of dislocation filtering in InGaAs/GaAs strained-layer superlattices , 1988 .

[21]  I. Sagnes,et al.  Designing novel organogermanium OMVPE precursors for high-purity germanium films , 2006 .

[22]  P. Iles,et al.  High-efficiency (>20% AM0) GaAs solar cells grown on inactive-Ge substrates , 1990, IEEE Electron Device Letters.

[23]  John E. Bowers,et al.  High performance continuous wave 1.3 μm quantum dot lasers on silicon , 2014 .

[24]  Takashi Jimbo,et al.  Characterization of Antiphase Domain in GaP on Misoriented (001) Si Substrate Grown by Metalorganic Chemical Vapor Deposition , 1993 .

[25]  H. Okamoto,et al.  Dislocation Reduction in GaAs on Si by Thermal Cycles and InGaAs/GaAs Strained-Layer Superlattices , 1987 .

[26]  W. Kobayashi,et al.  1.3-μm Range Metamorphic InGaAs Laser With High Characteristic Temperature for Low Power Consumption Operation , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[27]  W. Kobayashi,et al.  High temperature operation of 1.26 μm ridge waveguide laser with InGaAs metamorphic buffer on GaAs substrate , 2008, 2008 IEEE 21st International Semiconductor Laser Conference.

[28]  Laurent Vivien,et al.  Reduced pressure–chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-μm photodetection , 2004 .

[29]  Shinji Matsuo,et al.  1.3-μm InGaAs MQW Metamorphic Laser Diode Fabricated With Lattice Relaxation Control Based on In Situ Curvature Measurement , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[30]  James S. Harris,et al.  Antiphase domain annihilation during growth of GaP on Si by molecular beam epitaxy , 2013 .

[31]  John E. Bowers,et al.  Reliability of InAs/GaAs Quantum Dot Lasers Epitaxially Grown on Silicon , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[32]  M. Carroll,et al.  Monolithic Integration of GaAs/InGaAs Lasers on Virtual Ge Substrates via Aspect-Ratio Trapping , 2009 .

[33]  Emmanuel Augendre,et al.  Growth of InAs/GaAs quantum dots on germanium-on-insulator-on-silicon (GeOI) substrate with high optical quality at room temperature in the 1.3 μm band , 2010 .

[34]  Jian Wang,et al.  Ge-Photodetectors for Si-Based Optoelectronic Integration , 2011, Sensors.

[35]  Dimitri A. Antoniadis,et al.  High quality Ge on Si by epitaxial necking , 2000 .

[36]  John E. Ayers,et al.  Post-growth thermal annealing of GaAs on Si(001) grown by organometallic vapor phase epitaxy , 1992 .

[37]  W. Kobayashi,et al.  High-Temperature Operation of 1.26-$\mu$m Ridge Waveguide Laser With InGaAs Metamorphic Buffer on GaAs Substrate , 2009, IEEE Journal of Selected Topics in Quantum Electronics.