Ca2+ handling in excitation-contraction coupling requires considerable O2 consumption (VO2) in cardiac contraction. We have developed an integrative method to quantify total Ca2+ handling in normal hearts. However, its direct application to failing hearts, where futile Ca2+ cycling via the Ca2+-leaky sarcoplasmic reticulum (SR) required an increased Ca2+ handling VO2, was not legitimate. To quantify total Ca2+ handling even in such failing hearts, we combined futile Ca2+ cycling with Ca2+ handling VO2 and the internal Ca2+ recirculation fraction via the SR. We applied this method to the canine heart mechanoenergetics before and after intracoronary ryanodine at nanomolar concentrations. We found that total Ca2+ handling per beat was halved after the ryanodine treatment from approximately 60 micromol/kg left ventricle before ryanodine. We also found that futile Ca2+ cycling via the SR increased to >1 cycle/beat after ryanodine from presumably zero before ryanodine. These results support the applicability of the present method to the failing hearts with futile Ca2+ cycling via the SR.