New devices in heart failure: an European Heart Rhythm Association report: developed by the European Heart Rhythm Association; endorsed by the Heart Failure Association.

Several new devices for the treatment of heart failure (HF) patients have been introduced and are increasingly used in clinical practice or are under clinical evaluation in either observational and/or randomized clinical trials. These devices include cardiac contractility modulation, spinal cord stimulation, carotid sinus nerve stimulation, cervical vagal stimulation, intracardiac atrioventricular nodal vagal stimulation, and implantable hemodynamic monitoring devices. This task force believes that an overview on these technologies is important. Special focus is given to patients with HF New York Heart Association Classes III and IV and narrow QRS complex, who represent the largest group in HF compared with patients with wide QRS complex. An overview on potential device options in addition to optimal medical therapy will be helpful for all physicians treating HF patients.

[1]  J. Nielsen,et al.  ESC Guidelines on cardiac pacing and cardiac resynchronization therapy , 2014 .

[2]  Lluís Mont,et al.  2013 ESC guidelines on cardiac pacing and cardiac resynchronization therapy: the task force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). , 2013, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[3]  Lluís Mont,et al.  2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: the Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). , 2013, European heart journal.

[4]  W. Abraham Disease management: remote monitoring in heart failure patients with implantable defibrillators, resynchronization devices, and haemodynamic monitors. , 2013, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[5]  L. Lund,et al.  Prevalence, correlates, and prognostic significance of QRS prolongation in heart failure with reduced and preserved ejection fraction. , 2013, European heart journal.

[6]  Christophe Leclercq,et al.  2012 EHRA/HRS expert consensus statement on cardiac resynchronization therapy in heart failure: implant and follow-up recommendations and management. , 2012, Heart rhythm.

[7]  C. Siu,et al.  Thoracic Spinal Cord Stimulation Improves Cardiac Contractile Function and Myocardial Oxygen Consumption in a Porcine Model of Ischemic Heart Failure , 2012, Journal of cardiovascular electrophysiology.

[8]  J. Ardell,et al.  Neuromodulation targets intrinsic cardiac neurons to attenuate neuronally mediated atrial arrhythmias. , 2012, American journal of physiology. Regulatory, integrative and comparative physiology.

[9]  D. Hegarty,et al.  Spinal Cord Stimulation: The Clinical Application of New Technology , 2011, Anesthesiology research and practice.

[10]  Christophe Leclercq,et al.  2012 EHRA/HRS expert consensus statement on cardiac resynchronization therapy in heart failure: implant and follow-up recommendations and management. , 2012, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[11]  L. A. Bonet,et al.  ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012 , 2012, Turk Kardiyoloji Dernegi arsivi : Turk Kardiyoloji Derneginin yayin organidir.

[12]  Krzysztof Gil,et al.  Electrical vagus nerve stimulation decreases food consumption and weight gain in rats fed a high-fat diet. , 2011, Journal of physiology and pharmacology : an official journal of the Polish Physiological Society.

[13]  M. Neuss,et al.  Long-term outcome of cardiac contractility modulation in patients with severe congestive heart failure. , 2011, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[14]  D. Burkhoff,et al.  Subgroup analysis of a randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. , 2011, Journal of cardiac failure.

[15]  D. Whellan,et al.  Review of advanced heart failure device diagnostics examined in clinical trials and the potential benefit from monitoring capabilities. , 2011, Progress in cardiovascular diseases.

[16]  M. Gold,et al.  Continuous hemodynamic monitoring in patients with mild to moderate heart failure: results of The Reducing Decompensation Events Utilizing Intracardiac Pressures in Patients With Chronic Heart Failure (REDUCEhf) trial. , 2011, Congestive heart failure.

[17]  A. Katz,et al.  Potential value of automated daily screening of cardiac resynchronization therapy defibrillator diagnostics for prediction of major cardiovascular events: results from Home-CARE (Home Monitoring in Cardiac Resynchronization Therapy) study , 2011, European journal of heart failure.

[18]  Shi-ting Li,et al.  Spinal Cord Stimulation and Cerebral Hemodynamics: Updated Mechanism and Therapeutic Implications , 2011, Stereotactic and Functional Neurosurgery.

[19]  G. Bakris,et al.  Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled rheos pivotal trial. , 2011, Journal of the American College of Cardiology.

[20]  Hani N. Sabbah,et al.  Electrical vagus nerve stimulation for the treatment of chronic heart failure , 2011, Cleveland Clinic Journal of Medicine.

[21]  E. Barbieri,et al.  ICD and Neuromodulation Devices: Is Peaceful Coexistence Possible? , 2011, Pacing and clinical electrophysiology : PACE.

[22]  J. Goldberg,et al.  Recruitment and blocking properties of the CardioFit stimulation lead , 2011, Journal of neural engineering.

[23]  Douglas L. Jones,et al.  Spinal Cord Stimulation Causes Potentiation of Right Vagus Nerve Effects on Atrial Chronotropic Function and Repolarization in Canines , 2011, Journal of cardiovascular electrophysiology.

[24]  Markus Zabel,et al.  Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. , 2011, European heart journal.

[25]  R. Canby,et al.  Intrathoracic impedance vs daily weight monitoring for predicting worsening heart failure events: results of the Fluid Accumulation Status Trial (FAST). , 2011, Congestive heart failure.

[26]  Jianguo Cheng,et al.  Retrospective Review of 707 Cases of Spinal Cord Stimulation: Indications and Complications , 2011, Pain practice : the official journal of World Institute of Pain.

[27]  L. Stevenson,et al.  Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial , 2011, The Lancet.

[28]  D. Burkhoff,et al.  A randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. , 2011, American heart journal.

[29]  M. Zile,et al.  Chronic baroreflex activation: a potential therapeutic approach to heart failure with preserved ejection fraction. , 2011, Journal of cardiac failure.

[30]  Warren M. Grill,et al.  Excitation properties of the right cervical vagus nerve in adult dogs , 2011, Experimental Neurology.

[31]  E. Irwin,et al.  Chronic Electrical Stimulation of the Carotid Sinus Baroreflex Improves Left Ventricular Function and Promotes Reversal of Ventricular Remodeling in Dogs With Advanced Heart Failure , 2011, Circulation. Heart failure.

[32]  William T. Abraham,et al.  Direct Left Atrial Pressure Monitoring in Severe Heart Failure: Long-Term Sensor Performance , 2010, Journal of cardiovascular translational research.

[33]  Finn Gustafsson,et al.  2010 Focused Update of ESC Guidelines on Device Therapy in Heart Failure , 2011 .

[34]  M. Gold,et al.  Heart rate as a risk factor in chronic heart failure (SHIFT): the association between heart rate and outcomes in a randomised placebo-controlled trial , 2011 .

[35]  A. Sharan,et al.  Simultaneous Use of Neurostimulators in Patients With a Preexisting Cardiovascular Implantable Electronic Device , 2011, Neuromodulation : journal of the International Neuromodulation Society.

[36]  S. Verheule,et al.  Stimulation of the intra-cardiac vagal nerves innervating the AV-node to control ventricular rate during AF: specificity, parameter optimization and chronic use up to 3 months , 2011, Journal of Interventional Cardiac Electrophysiology.

[37]  Peter J. Schwartz,et al.  Sympathetic–parasympathetic interaction in health and disease: abnormalities and relevance in heart failure , 2011, Heart Failure Reviews.

[38]  Peter J. Schwartz,et al.  Vagus nerve stimulation: from pre-clinical to clinical application: challenges and future directions , 2011, Heart Failure Reviews.

[39]  B. Olshansky,et al.  Inflammatory cytokines and nitric oxide in heart failure and potential modulation by vagus nerve stimulation , 2011, Heart Failure Reviews.

[40]  U. Hoppe,et al.  Baroreflex activation as a novel therapeutic strategy for diastolic heart failure , 2011, Clinical Research in Cardiology.

[41]  P. Ponikowski,et al.  Changes in autonomic balance in patients with decompensated chronic heart failure , 2011, Clinical Autonomic Research.

[42]  H. Krumholz,et al.  Telemonitoring in patients with heart failure. , 2010, The New England journal of medicine.

[43]  Jagmeet P. Singh,et al.  Implantable sensors for heart failure. , 2010, Circulation. Arrhythmia and electrophysiology.

[44]  Jens Jordan,et al.  Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. , 2010, Journal of the American College of Cardiology.

[45]  P. Ponikowski,et al.  EURObservational Research Programme: The Heart Failure Pilot Survey (ESC‐HF Pilot) , 2010, European journal of heart failure.

[46]  Michael Böhm,et al.  Heart rate as a risk factor in chronic heart failure (SHIFT): the association between heart rate and outcomes in a randomised placebo-controlled trial , 2010, The Lancet.

[47]  C. Scherer,et al.  Spinal cord stimulation for refractory angina in patients implanted with cardioverter defibrillators: five case reports. , 2010, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[48]  G. Torre-Amione,et al.  Initial Experience with Spinal Cord Stimulation (SCS) for the Treatment of Advanced Heart Failure , 2010 .

[49]  Sana M. Al-Khatib,et al.  Combined heart failure device diagnostics identify patients at higher risk of subsequent heart failure hospitalizations: results from PARTNERS HF (Program to Access and Review Trending Information and Evaluate Correlation to Symptoms in Patients With Heart Failure) study. , 2010, Journal of the American College of Cardiology.

[50]  William T. Abraham,et al.  Physician-Directed Patient Self-Management of Left Atrial Pressure in Advanced Chronic Heart Failure , 2010, Circulation.

[51]  Jens Jordan,et al.  Carotid Baroreceptor Stimulation, Sympathetic Activity, Baroreflex Function, and Blood Pressure in Hypertensive Patients , 2010, Hypertension.

[52]  P. Schauerte,et al.  Chronic Augmentation of the Parasympathetic Tone to the Atrioventricular Node: A Nonthoracotomy Neurostimulation Technique for Ventricular Rate Control During Atrial Fibrillation , 2010, Journal of cardiovascular electrophysiology.

[53]  D. Burkhoff,et al.  Impact of cardiac contractility modulation on left ventricular global and regional function and remodeling. , 2009, JACC. Cardiovascular imaging.

[54]  P. Schwartz,et al.  Chronic vagal stimulation in patients with congestive heart failure , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[55]  P. Schwartz,et al.  Vagal stimulation for heart failure: background and first in-man study. , 2009, Heart rhythm.

[56]  Zoran B. Popović,et al.  Chronic Vagus Nerve Stimulation Improves Autonomic Control and Attenuates Systemic Inflammation and Heart Failure Progression in a Canine High-Rate Pacing Model , 2009, Circulation. Heart failure.

[57]  A. de Silvestri,et al.  A meta-analysis of remote monitoring of heart failure patients. , 2009, Journal of the American College of Cardiology.

[58]  P. Schauerte,et al.  Atrioventricular (AV) node vagal stimulation by transvenous permanent lead implantation to modulate AV node function: safety and feasibility in humans. , 2009, Heart rhythm.

[59]  A. Kroon,et al.  Effects of Chronic Baroreceptor Stimulation on the Autonomic Cardiovascular Regulation in Patients With Drug-Resistant Arterial Hypertension , 2009, Hypertension.

[60]  D. Zipes,et al.  Spinal Cord Stimulation Improves Ventricular Function and Reduces Ventricular Arrhythmias in a Canine Postinfarction Heart Failure Model , 2009, Circulation.

[61]  D. Abejón,et al.  Spinal Cord Stimulation: A 20‐Year Retrospective Analysis in 260 Patients , 2009, Neuromodulation : journal of the International Neuromodulation Society.

[62]  K. Slavin,et al.  NANS Training Requirements for Spinal Cord Stimulation Devices: Selection, Implantation, and Follow‐up , 2009, Neuromodulation : journal of the International Neuromodulation Society.

[63]  M. Bedder,et al.  Spinal Cord Stimulation Surgical Technique for the Nonsurgically Trained , 2009, Neuromodulation : journal of the International Neuromodulation Society.

[64]  R. Cardinal,et al.  Dorsal spinal cord stimulation obtunds the capacity of intrathoracic extracardiac neurons to transduce myocardial ischemia , 2009, American journal of physiology. Regulatory, integrative and comparative physiology.

[65]  B. Georgy,et al.  Spinal cord stimulation: a basic approach. , 2009, Techniques in vascular and interventional radiology.

[66]  D. Burkhoff,et al.  "Responder analysis" for assessing effectiveness of heart failure therapies based on measures of exercise tolerance. , 2009, Journal of cardiac failure.

[67]  Youhua Zhang,et al.  Relationship between right cervical vagus nerve stimulation and atrial fibrillation inducibility: therapeutic intensities do not increase arrhythmogenesis. , 2009, Heart rhythm.

[68]  S. A. Christman,et al.  Heart failure decompensation and all-cause mortality in relation to percent biventricular pacing in patients with heart failure: is a goal of 100% biventricular pacing necessary? , 2009, Journal of the American College of Cardiology.

[69]  D. Abejón,et al.  Peripheral Nerve Stimulation or Is It Peripheral Subcutaneous Field Stimulation; What Is in a Moniker? , 2009, Neuromodulation : journal of the International Neuromodulation Society.

[70]  H. Nägele,et al.  Cardiac contractility modulation in non-responders to cardiac resynchronization therapy. , 2008, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[71]  P. Fisher,et al.  Abstract 2411: The Importance of Right Ventricular Dysfunction in patients with Hemodynamically Compromising Rejection , 2008 .

[72]  Aleksandra Vuckovic,et al.  A comparative study of three techniques for diameter selective fiber activation in the vagal nerve: anodal block, depolarizing prepulses and slowly rising pulses , 2008, Journal of neural engineering.

[73]  Brian Olshansky,et al.  Parasympathetic nervous system and heart failure: pathophysiology and potential implications for therapy. , 2008, Circulation.

[74]  W. Zareba,et al.  Heart rate turbulence predicts all-cause mortality and sudden death in congestive heart failure patients. , 2008, Heart rhythm.

[75]  J Toouli,et al.  Intra-abdominal vagal blocking (VBLOC therapy): clinical results with a new implantable medical device. , 2008, Surgery.

[76]  D. Burkhoff,et al.  Cardiac contractility modulation electrical signals improve myocardial gene expression in patients with heart failure. , 2008, Journal of the American College of Cardiology.

[77]  Wojciech Zareba,et al.  Inappropriate implantable cardioverter-defibrillator shocks in MADIT II: frequency, mechanisms, predictors, and survival impact. , 2008, Journal of the American College of Cardiology.

[78]  G. Hindricks,et al.  Randomized, double blind study of non-excitatory, cardiac contractility modulation electrical impulses for symptomatic heart failure. , 2008, European heart journal.

[79]  R. Grimaldi,et al.  Spinal cord stimulation affects T-wave alternans in patients with ischaemic cardiomyopathy: a pilot study. , 2008, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[80]  M. Zile,et al.  Randomized controlled trial of an implantable continuous hemodynamic monitor in patients with advanced heart failure: the COMPASS-HF study. , 2008, Journal of the American College of Cardiology.

[81]  Mingyuan Wu,et al.  Putative mechanisms behind effects of spinal cord stimulation on vascular diseases: A review of experimental studies , 2008, Autonomic Neuroscience.

[82]  R. Bourge,et al.  Comparison of a radiofrequency-based wireless pressure sensor to swan-ganz catheter and echocardiography for ambulatory assessment of pulmonary artery pressure in heart failure. , 2007, Journal of the American College of Cardiology.

[83]  William T. Abraham,et al.  Direct Left Atrial Pressure Monitoring in Ambulatory Heart Failure Patients: Initial Experience With a New Permanent Implantable Device , 2007, Circulation.

[84]  P. Tchou,et al.  Cardiac-resynchronization therapy in heart failure with narrow QRS complexes. , 2007, The New England journal of medicine.

[85]  P. Schwartz,et al.  Baroreflex sensitivity predicts long-term cardiovascular mortality after myocardial infarction even in patients with preserved left ventricular function. , 2007, Journal of the American College of Cardiology.

[86]  E. Irwin,et al.  Chronic Baroreceptor Activation Enhances Survival in Dogs With Pacing-Induced Heart Failure , 2007, Hypertension.

[87]  Christian Butter,et al.  Clinical utility of intrathoracic impedance monitoring to alert patients with an implanted device of deteriorating chronic heart failure. , 2007, European heart journal.

[88]  D. Burkhoff,et al.  Therapy with cardiac contractility modulation electrical signals improves left ventricular function and remodeling in dogs with chronic heart failure. , 2007, Journal of the American College of Cardiology.

[89]  E. Irwin,et al.  An implantable carotid sinus baroreflex activating system: surgical technique and short-term outcome from a multi-center feasibility trial for the treatment of resistant hypertension. , 2007, European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery.

[90]  E. Wellnhofer,et al.  Enhanced inotropic state of the failing left ventricle by cardiac contractility modulation electrical signals is not associated with increased myocardial oxygen consumption. , 2007, Journal of cardiac failure.

[91]  J. Coote,et al.  Autonomic modulation of electrical restitution, alternans and ventricular fibrillation initiation in the isolated heart. , 2007, Cardiovascular research.

[92]  R. Bourge,et al.  A wireless pressure sensor for monitoring pulmonary artery pressure in advanced heart failure: initial experience. , 2007, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[93]  B. Linderoth,et al.  Preemptive, but not reactive, spinal cord stimulation mitigates transient ischemia-induced myocardial infarction via cardiac adrenergic neurons. , 2007, American journal of physiology. Heart and circulatory physiology.

[94]  Robert Cody,et al.  An implantable carotid sinus stimulator for drug-resistant hypertension: surgical technique and short-term outcome from the multicenter phase II Rheos feasibility trial. , 2006, Journal of vascular surgery.

[95]  R. Cardinal,et al.  Spinal cord stimulation suppresses bradycardias and atrial tachyarrhythmias induced by mediastinal nerve stimulation in dogs. , 2006, American journal of physiology. Regulatory, integrative and comparative physiology.

[96]  D. Burkhoff,et al.  Nonexcitatory, cardiac contractility modulation electrical impulses: Feasibility study for advanced heart failure in patients with normal QRS duration , 2006 .

[97]  D. Burkhoff,et al.  Nonexcitatory, cardiac contractility modulation electrical impulses: feasibility study for advanced heart failure in patients with normal QRS duration. , 2006, Heart rhythm.

[98]  D. Rozen,et al.  Feasibility of spinal cord stimulation in a patient with a cardiac pacemaker. , 2006, Pain physician.

[99]  R. Tio,et al.  An open label, single-centre, randomized trial of spinal cord stimulation vs. percutaneous myocardial laser revascularization in patients with refractory angina pectoris: the SPiRiT trial: reply , 2006 .

[100]  J. Blankensteijn,et al.  Statin Use Is Associated with Reduced All-Cause Mortality after Endovascular Abdominal Aortic Aneurysm Repair , 2006, Vascular.

[101]  H. Vermeulen,et al.  Spinal cord stimulation for non-reconstructable chronic critical leg ischaemia. , 2013, The Cochrane database of systematic reviews.

[102]  G. Hindricks,et al.  Electrical signals applied during the absolute refractory period: an investigational treatment for advanced heart failure in patients with normal QRS duration. , 2005, Journal of the American College of Cardiology.

[103]  P. Schauerte,et al.  Determinants and Effects of Electrical Stimulation of the Inferior Interatrial Parasympathetic Plexus During Atrial Fibrillation , 2005, Journal of cardiovascular electrophysiology.

[104]  M. Sugimachi,et al.  Vagal stimulation markedly suppresses arrhythmias in conscious rats with chronic heart failure after myocardial infarction , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[105]  Seil Oh,et al.  Chronic Atrioventricular Nodal Vagal Stimulation: First Evidence for Long-Term Ventricular Rate Control in Canine Atrial Fibrillation Model , 2005, Circulation.

[106]  C. Lau,et al.  Intrathoracic Impedance Monitoring in Patients With Heart Failure: Correlation With Fluid Status and Feasibility of Early Warning Preceding Hospitalization , 2005, Circulation.

[107]  G. Kay,et al.  Implant Experience with an Implantable Hemodynamic Monitor for the Management of Symptomatic Heart Failure , 2005, Pacing and clinical electrophysiology : PACE.

[108]  D. Zipes,et al.  Thoracic Spinal Cord Stimulation Reduces the Risk of Ischemic Ventricular Arrhythmias in a Postinfarction Heart Failure Canine Model , 2005, Circulation.

[109]  D. Burkhoff,et al.  Nonexcitatory electrical signals for enhancing ventricular contractility: rationale and initial investigations of an experimental treatment for heart failure. , 2005, American journal of physiology. Heart and circulatory physiology.

[110]  F. Crea,et al.  Effect of spinal cord stimulation on spontaneous and stress-induced angina and 'ischemia-like' ST-segment depression in patients with cardiac syndrome X. , 2005, European heart journal.

[111]  R. Schwinger,et al.  Symptomatic relief precedes improvement of myocardial blood flow in patients under spinal cord stimulation , 2005, Current controlled trials in cardiovascular medicine.

[112]  P. Binkley,et al.  A polymorphism of the endothelial nitric oxide synthase promoter is associated with an increase in autonomic imbalance in patients with congestive heart failure. , 2005, American heart journal.

[113]  E. Steyerberg,et al.  Letter: Systematic review and meta‐analysis of controlled trials assessing spinal cord stimulation for inoperable critical leg ischaemia (Br J Surg 2004; 91: 948‐955) , 2005, The British journal of surgery.

[114]  E. Steyerberg,et al.  Systematic review and meta-analysis of controlled trials assessing spinal cord stimulation for inoperable critical leg ischaemia. Author's reply , 2005 .

[115]  H. Vermeulen,et al.  Spinal cord stimulation for non-reconstructable chronic critical leg ischaemia [COCHRANE review; CD004001] , 2005 .

[116]  B. Stacey,et al.  Successful use of spinal cord stimulation in the treatment of severe Raynaud's disease of the hands. , 2005, Anesthesiology.

[117]  W. Abraham,et al.  Continuous Autonomic Assessment in Patients With Symptomatic Heart Failure: Prognostic Value of Heart Rate Variability Measured by an Implanted Cardiac Resynchronization Device , 2004, Circulation.

[118]  M. Dunlap,et al.  Prevention of diminished parasympathetic control of the heart in experimental heart failure. , 2004, American journal of physiology. Heart and circulatory physiology.

[119]  G. Spincemaille,et al.  Systematic review and meta‐analysis of controlled trials assessing spinal cord stimulation for inoperable critical leg ischaemia , 2004, The British journal of surgery.

[120]  R. Goodman,et al.  Initial interactions in electromagnetic field‐induced biosynthesis , 2004, Journal of cellular physiology.

[121]  D. DeMets,et al.  Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. , 2004, The New England journal of medicine.

[122]  G. Hindricks,et al.  Chronic electrical stimulation during the absolute refractory period of the myocardium improves severe heart failure. , 2004, European heart journal.

[123]  M. Wolzt,et al.  First Human Chronic Experience with Cardiac Contractility Modulation by Nonexcitatory Electrical Currents for Treating Systolic Heart Failure: , 2004, Journal of cardiovascular electrophysiology.

[124]  R. Cardinal,et al.  Spinal cord activation differentially modulates ischaemic electrical responses to different stressors in canine ventricles , 2004, Autonomic Neuroscience.

[125]  T. Cameron,et al.  Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: a 20-year literature review. , 2004, Journal of neurosurgery.

[126]  Masaru Sugimachi,et al.  Vagal Nerve Stimulation Markedly Improves Long-Term Survival After Chronic Heart Failure in Rats , 2003, Circulation.

[127]  S. Ben‐Haim,et al.  Cardiac Contractility Modulation With the Impulse Dynamics Signal: Studies in Dogs With Chronic Heart Failure , 2004, Heart Failure Reviews.

[128]  C. Pappone,et al.  Electrical Modulation of Cardiac Contractility: Clinical Aspects in Congestive Heart Failure , 2004, Heart Failure Reviews.

[129]  M. Börjesson,et al.  Feasibility of Spinal Cord Stimulation in Angina Pectoris in Patients with Chronic Pacemaker Treatment for Cardiac Arrhythmias , 2003, Pacing and clinical electrophysiology : PACE.

[130]  B. Lüderitz,et al.  Potential device interaction of a dual chamber implantable cardioverter defibrillator in a patient with continuous spinal cord stimulation. , 2003, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[131]  R. Schwinger,et al.  Verbesserte myokardiale Durchblutung nach epiduraler Rückenmarkstimulation bei therapierefraktärer Angina pectoris , 2003, Medizinische Klinik.

[132]  S. Ben‐Haim,et al.  Cardiac contractility modulation with nonexcitatory electric signals improves left ventricular function in dogs with chronic heart failure. , 2003, Journal of cardiac failure.

[133]  L. Rydén,et al.  Ongoing right ventricular hemodynamics in heart failure: clinical value of measurements derived from an implantable monitoring system. , 2003, Journal of the American College of Cardiology.

[134]  O. Alfieri,et al.  Cardiac contractility modulation by electric currents applied during the refractory period in patients with heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. , 2002, The American journal of cardiology.

[135]  Milton Packer,et al.  Cardiac resynchronization in chronic heart failure. , 2002, The New England journal of medicine.

[136]  Youhua Zhang,et al.  Ventricular Rate Control by Selective Vagal Stimulation Is Superior to Rhythm Regularization by Atrioventricular Nodal Ablation and Pacing During Atrial Fibrillation , 2002, Circulation.

[137]  P. McCullough,et al.  Congestive heart failure and QRS duration: establishing prognosis study. , 2002, Chest.

[138]  D. Delurgio,et al.  Cardiac resynchronization in chronic heart failure. , 2002, The New England journal of medicine.

[139]  J. Olgin,et al.  Effects of Thoracic Spinal Cord Stimulation on Cardiac Autonomic Regulation of the Sinus and Atrioventricular Nodes , 2002, Journal of cardiovascular electrophysiology.

[140]  D. Burkhoff,et al.  Cardiac contractility modulation by electric currents applied during the refractory period. , 2002, American journal of physiology. Heart and circulatory physiology.

[141]  Philip Adamson,et al.  Continuous ambulatory right heart pressure measurements with an implantable hemodynamic monitor: a multicenter, 12-month follow-up study of patients with chronic heart failure. , 2002, Journal of cardiac failure.

[142]  M. Pasic,et al.  The problem of chronic refractory angina; report from the ESC Joint Study Group on the Treatment of Refractory Angina. , 2002, European heart journal.

[143]  H. Krumholz,et al.  β-Blocker Therapy in Heart Failure: Scientific Review , 2002 .

[144]  R. Arora,et al.  Long-term modulation of the intrinsic cardiac nervous system by spinal cord neurons in normal and ischaemic hearts , 2002, Autonomic Neuroscience.

[145]  C. Kidd,et al.  Nitric Oxide Facilitates Vagal Control of Heart Rate Via Actions in the Cardiac Parasympathetic Ganglia of the Anaesthetised Dog , 2002, Experimental physiology.

[146]  H. Krumholz,et al.  beta-Blocker therapy in heart failure: scientific review. , 2002, JAMA.

[147]  P. Schauerte,et al.  Catheter Stimulation of Cardiac Parasympathetic Nerves in Humans: A Novel Approach to the Cardiac Autonomic Nervous System , 2001, Circulation.

[148]  L. V. von Segesser,et al.  Spinal cord stimulation treatment for angina pectoris: more than a placebo? , 2001, The Annals of thoracic surgery.

[149]  L. Stevenson,et al.  Spinal cord stimulation for chronic intractable angina pectoris: A unified theory on its mechanism , 2001, Clinical cardiology.

[150]  G. Jennings,et al.  Effect of cardiac sympathetic nervous activity on mode of death in congestive heart failure. , 2001, European heart journal.

[151]  A. Loewy,et al.  Synaptic and Neurotransmitter Activation of Cardiac Vagal Neurons in the Nucleus Ambiguus , 2001, Annals of the New York Academy of Sciences.

[152]  David John Adams,et al.  Large-conductance calcium-activated potassium channels in neonatal rat intracardiac ganglion neurons , 2001, Pflügers Archiv.

[153]  Gregory S. Nelson,et al.  Left Ventricular or Biventricular Pacing Improves Cardiac Function at Diminished Energy Cost in Patients With Dilated Cardiomyopathy and Left Bundle-Branch Block , 2000, Circulation.

[154]  R Lazzara,et al.  Catheter Ablation of Cardiac Autonomic Nerves for Prevention of Vagal Atrial Fibrillation , 2000, Circulation.

[155]  S. S. Hull,et al.  Modulation of intrinsic cardiac neurons by spinal cord stimulation: implications for its therapeutic use in angina pectoris. , 2000, Cardiovascular research.

[156]  K. Tracey,et al.  Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin , 2000, Nature.

[157]  A. Brodison,et al.  Spinal-cord stimulation in management of angina , 1999, The Lancet.

[158]  M. Dunlap,et al.  Ganglionic mechanisms contribute to diminished vagal control in heart failure. , 1999, Circulation.

[159]  M. Andresen,et al.  Graded and dynamic reflex summation of myelinated and unmyelinated rat aortic baroreceptors. , 1999, The American journal of physiology.

[160]  M. Staal,et al.  Spinal cord stimulation in chronic intractable angina pectoris: a randomized, controlled efficacy study. , 1998, American heart journal.

[161]  Thomas Hedner,et al.  Myocardial Turnover of Endogenous Opioids and Calcitonin-Gene-Related Peptide in the Human Heart and the Effects of Spinal Cord Stimulation on Pacing-Induced Angina Pectoris , 1998, Cardiology.

[162]  J. Bigger,et al.  Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction , 1998, The Lancet.

[163]  A. Grieco,et al.  Efficacy and Safety of Permanent Cardiac DDD Pacing with Contemporaneous Double Spinal Cord Stimulation , 1998, Pacing and clinical electrophysiology : PACE.

[164]  J. Brouwer,et al.  Effect of spinal cord stimulation on heart rate variability and myocardial ischemia in patients with chronic intractable angina pectoris—A prospective ambulatory electrocardiographic study , 1998, Clinical cardiology.

[165]  G D Pinna,et al.  Arterial baroreflex modulation of heart rate in chronic heart failure: clinical and hemodynamic correlates and prognostic implications. , 1997, Circulation.

[166]  D. Hopkins,et al.  Gross and microscopic anatomy of the human intrinsic cardiac nervous system , 1997, The Anatomical record.

[167]  D. Mendelowitz,et al.  Firing properties of identified parasympathetic cardiac neurons in nucleus ambiguus. , 1996, The American journal of physiology.

[168]  S. Vatner,et al.  Physiological and biochemical evidence for coordinate increases in muscarinic receptors and Gi during pacing-induced heart failure. , 1996, Circulation.

[169]  L. Rydén,et al.  Monitoring of pulmonary arterial diastolic pressure through a right ventricular pressure transducer. , 1995, Journal of cardiac failure.

[170]  M. Staal,et al.  Stimulation Characteristics, Complications, and Efficacy of Spinal Cord Stimulation Systems in Patients with Refractory Angina: A Prospective Feasibility Study , 1994, Pacing and clinical electrophysiology : PACE.

[171]  M. Creager,et al.  Arterial baroreflex regulation of blood pressure in patients with congestive heart failure. , 1994, Journal of the American College of Cardiology.

[172]  D L Kunze,et al.  Nucleus tractus solitarius--gateway to neural circulatory control. , 1994, Annual review of physiology.

[173]  M. Kollai,et al.  Relation between baroreflex sensitivity and cardiac vagal tone in humans. , 1994, The American journal of physiology.

[174]  L. Augustinsson,et al.  Assessment of the influence of spinal cord stimulation on left ventricular function in patients with severe angina pectoris: an echocardiographic study. , 1993, European heart journal.

[175]  L. Augustinsson,et al.  Spinal cord stimulation in angina pectoris with normal coronary arteriograms , 1993, Coronary artery disease.

[176]  P. Schwartz,et al.  A mechanism of cardiac pain suppression by spinal cord stimulation: implications for patients with angina pectoris. , 1993, European heart journal.

[177]  P. Binkley,et al.  Parasympathetic withdrawal is an integral component of autonomic imbalance in congestive heart failure: demonstration in human subjects and verification in a paced canine model of ventricular failure. , 1991, Journal of the American College of Cardiology.

[178]  S. S. Hull,et al.  Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. , 1991, Circulation research.

[179]  B. Maciel,et al.  Abnormal baroreflex control of heart rate in decompensated congestive heart failure and reversal after compensation. , 1991, The American journal of cardiology.

[180]  C Antzelevitch,et al.  Differences in the electrophysiological response of canine ventricular subendocardium and subepicardium to acetylcholine and isoproterenol. A direct effect of acetylcholine in ventricular myocardium. , 1990, Circulation research.

[181]  M. Mauro,et al.  Nonoperative management of peripancreatic arterial aneurysms. A 10-year experience. , 1987, Annals of surgery.

[182]  Y. Hosobuchi Electrical stimulation of the cervical spinal cord increases cerebral blood flow in humans. , 1985, Applied neurophysiology.

[183]  D C Harrison,et al.  Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. , 1982, The New England journal of medicine.

[184]  H. Seller,et al.  Localization of neurones with baroreceptor input in the medial solitary nucleus by means of intracellular application of horseradish peroxidase in the cat , 1982, Neuroscience Letters.

[185]  E. Prystowsky,et al.  Effect of Autonomic Blockade on Ventricular Refractoriness and Atrioventricular Nodal Conduction in Humans: Evidence Supporting a Direct Cholinergic Action on Ventricular Muscle Refractoriness , 1981, Circulation research.

[186]  D. Long,et al.  Electrical stimulation of the spinal cord and peripheral nerves for pain control. A 10-year experience. , 1981, Applied neurophysiology.

[187]  H. Kirchheim Systemic arterial baroreceptor reflexes. , 1976, Physiological reviews.

[188]  D L Eckberg,et al.  Defective cardiac parasympathetic control in patients with heart disease. , 1971, The New England journal of medicine.

[189]  P. Wall,et al.  Pain mechanisms: a new theory. , 1965, Science.

[190]  H. Schnitzlein,et al.  The numbers of nerve fibers in the vagus nerve of man , 1961, The Anatomical record.