Controlled synthesis and shape-dependent electromagnetic wave absorption characteristics of porous Fe3O4 sub-micro particles

[1]  Yuan jie,et al.  Enhanced Ferromagnetism and Microwave Dielectric Properties of Bi 0.95 Y 0.05 FeO 3 Nanocrystals , 2011 .

[2]  Fan Zhang,et al.  Fe3O4/TiO2 Core/Shell Nanotubes: Synthesis and Magnetic and Electromagnetic Wave Absorption Characteristics , 2010 .

[3]  Fan Zhang,et al.  Synthesis, Multi-Nonlinear Dielectric Resonance, and Excellent Electromagnetic Absorption Characteristics of Fe3O4/ZnO Core/Shell Nanorods , 2010 .

[4]  B. Wen,et al.  Preparation and microwave absorption properties of basalt fiber/nickel core–shell heterostructures , 2010 .

[5]  M. Cao,et al.  Microwave responses and general model of nanotetraneedle ZnO: Integration of interface scattering, microcurrent, dielectric relaxation, and microantenna , 2010 .

[6]  Jie Yuan,et al.  The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites , 2010 .

[7]  Jie Yuan,et al.  Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability , 2009 .

[8]  Chenjie Xu,et al.  Porous hollow Fe(3)O(4) nanoparticles for targeted delivery and controlled release of cisplatin. , 2009, Journal of the American Chemical Society.

[9]  M. Cao,et al.  High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite , 2009 .

[10]  M. Cao,et al.  High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band , 2009 .

[11]  Taeghwan Hyeon,et al.  Synthesis of uniform ferrimagnetic magnetite nanocubes. , 2009, Journal of the American Chemical Society.

[12]  Donghang Yan,et al.  Multistep synthesis, growth mechanism, optical, and microwave absorption properties of ZnO dendritic nanostructures , 2008 .

[13]  H. Meng,et al.  Microwave-absorption properties of ZnO-coated iron nanocapsules , 2008 .

[14]  Xiaozhou Liu,et al.  Large low field magnetoresistance in ultrathin nanocrystalline magnetite Fe3O4 films at room temperature , 2007 .

[15]  Masao Terada,et al.  Enhanced electromagnetic wave absorption properties of Fe nanowires in gigaherz range , 2007 .

[16]  L. Deng,et al.  Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability , 2007 .

[17]  Dong-Hwang Chen,et al.  Ag nanoshell-induced dual-frequency electromagnetic wave absorption of Ni nanoparticles , 2007 .

[18]  M. Kovalenko,et al.  Fatty acid salts as stabilizers in size- and shape-controlled nanocrystal synthesis: the case of inverse spinel iron oxide. , 2007, Journal of the American Chemical Society.

[19]  Qianwang Chen,et al.  Synthesis and Assembly of Magnetite Nanocubes into Flux-Closure Rings , 2007 .

[20]  K. Hu,et al.  The microwave electromagnetic and absorption properties of some porous iron powders , 2007 .

[21]  Mingyuan Gao,et al.  Preparation of Biocompatible Magnetite Nanocrystals for In Vivo Magnetic Resonance Detection of Cancer , 2006 .

[22]  Yang Liu,et al.  Microwave absorption properties of the carbon-coated nickel nanocapsules , 2006 .

[23]  Do Kyung Kim,et al.  Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. , 2006, Journal of the American Chemical Society.

[24]  Chunyi Zhi,et al.  Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite , 2006 .

[25]  Jin-Sil Choi,et al.  In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. , 2005, Journal of the American Chemical Society.

[26]  Qing Peng,et al.  A general strategy for nanocrystal synthesis , 2005, Nature.

[27]  Daihua Zhang,et al.  Single crystalline magnetite nanotubes. , 2005, Journal of the American Chemical Society.

[28]  B. Erné,et al.  Direct imaging of zero-field dipolar structures in colloidal dispersions of synthetic magnetite. , 2004, Journal of the American Chemical Society.

[29]  Y. J. Chen,et al.  Microwave absorption properties of the ZnO nanowire-polyester composites , 2004 .

[30]  Qing Chen,et al.  Microwave Absorption Enhancement and Complex Permittivity and Permeability of Fe Encapsulated within Carbon Nanotubes , 2004 .

[31]  Alexander Wei,et al.  Flux closure in self-assembled cobalt nanoparticle rings. , 2003, Angewandte Chemie.

[32]  M. Morales,et al.  Static and dynamic magnetic properties of spherical magnetite nanoparticles , 2003 .

[33]  J. Coey,et al.  Enhanced magnetoresistance in nanocrystalline magnetite , 2003 .

[34]  Hao Zeng,et al.  Size-controlled synthesis of magnetite nanoparticles. , 2002, Journal of the American Chemical Society.

[35]  A. Ribbe,et al.  Self-assembly of cobalt nanoparticle rings. , 2002, Journal of the American Chemical Society.

[36]  G. Sawatzky,et al.  In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy , 1999 .

[37]  L. Olmedo,et al.  Microwave characterization and modelization of magnetic granular materials , 1993 .

[38]  R. Chantrell,et al.  Agglomerate formation in a magnetic fluid , 1982 .

[39]  A. Hippel,et al.  DIELECTRIC SPECTROSCOPY OF FERROMAGNETIC SEMICONDUCTORS , 1957 .

[40]  C. Kittel On the Theory of Ferromagnetic Resonance Absorption , 1948 .

[41]  小川 智之 Synthesis and magnetic properties of monodisperse magnetite nanocubes , 2008 .