Explicitly correlated R12/F12 methods for electronic structure.

[1]  Werner Kutzelnigg,et al.  Quantum chemistry in Fock space. I. The universal wave and energy operators , 1982 .

[2]  Edward F. Valeev,et al.  Explicitly correlated combined coupled-cluster and perturbation methods. , 2009, The Journal of chemical physics.

[3]  Edward F. Valeev,et al.  Equations of explicitly-correlated coupled-cluster methods. , 2008, Physical chemistry chemical physics : PCCP.

[4]  J. C. Slater Central Fields and Rydberg Formulas in Wave Mechanics , 1928 .

[5]  T. Kinoshita GROUND STATE OF THE HELIUM ATOM. II , 1959 .

[6]  H. Schwartz GROUND-STATE SOLUTION OF THE NONRELATIVISTIC EQUATION FOR HELIUM , 1956 .

[7]  W. Kutzelnigg,et al.  Spinfree formulation of reduced density matrices, density cumulants and generalised normal ordering , 2010 .

[8]  Toichiro Kinoshita,et al.  GROUND STATE OF THE HELIUM ATOM , 1957 .

[9]  David Feller,et al.  Application of systematic sequences of wave functions to the water dimer , 1992 .

[10]  John A. Montgomery,et al.  A complete basis set model chemistry. IV. An improved atomic pair natural orbital method , 1994 .

[11]  Richard A. Friesner,et al.  Solution of self-consistent field electronic structure equations by a pseudospectral method , 1985 .

[12]  J. Noga,et al.  Avoiding numerical instabilities in R12 calculations through universal R12 consistent basis sets , 2003 .

[13]  N. Handy The transcorrelated method for accurate correlation energies using gaussian-type functions: examples on He, H2, LiH and H2O , 2002 .

[14]  J. G. Zabolitzky,et al.  Atomic and molecular correlation energies with explicitly correlated Gaussian geminals. IV. A simplified treatment of strong orthogonality in MBPT and coupled cluster calculations , 1984 .

[15]  G. A. Petersson,et al.  Complete basis set correlation energies. I. The asymptotic convergence of pair natural orbital expansions , 1981 .

[16]  C. Pekeris,et al.  Ground State of Two-Electron Atoms , 1958 .

[17]  Hiroshi Nakatsuji,et al.  Solving the Schrödinger equation of helium and its isoelectronic ions with the exponential integral (Ei) function in the free iterative complement interaction method. , 2008, Physical chemistry chemical physics : PCCP.

[18]  T. Helgaker,et al.  Second-order Møller–Plesset perturbation theory with terms linear in the interelectronic coordinates and exact evaluation of three-electron integrals , 2002 .

[19]  Robert J. Gdanitz,et al.  Accurately solving the electronic Schrödinger equation of atoms and molecules using explicitly correlated (r12-)MR-CI. II. Ground-state energies of first-row atoms and positive atomic ions , 1998 .

[20]  Harrison Shull,et al.  NATURAL ORBITALS IN THE QUANTUM THEORY OF TWO-ELECTRON SYSTEMS , 1956 .

[21]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[22]  Kimihiko Hirao,et al.  Multireference Møller—Plesset perturbation theory for high-spin open-shell systems , 1992 .

[23]  Hans-Joachim Werner,et al.  Systematically convergent basis sets for explicitly correlated wavefunctions: the atoms H, He, B-Ne, and Al-Ar. , 2008, The Journal of chemical physics.

[24]  Rodney J. Bartlett,et al.  Noniterative energy corrections through fifth-order to the coupled cluster singles and doubles method , 1998 .

[25]  E. Hylleraas,et al.  Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium , 1929 .

[26]  W. Klopper A hybrid scheme for the resolution-of-the-identity approximation in second-order Møller-Plesset linear-r(12) perturbation theory. , 2004, The Journal of chemical physics.

[27]  Werner Kutzelnigg,et al.  Rates of convergence of the partial‐wave expansions of atomic correlation energies , 1992 .

[28]  D. Tew,et al.  A diagonal orbital-invariant explicitly-correlated coupled-cluster method , 2008 .

[29]  Edward F. Valeev,et al.  SF-[2]R12: a spin-adapted explicitly correlated method applicable to arbitrary electronic states. , 2011, The Journal of chemical physics.

[30]  D. Tew,et al.  The weak orthogonality functional in explicitly correlated pair theories. , 2007, The Journal of chemical physics.

[31]  J. Noga,et al.  Alternative formulation of the matrix elements in MP2‐R12 theory , 2005 .

[32]  D. Tew,et al.  Communications: Accurate and efficient approximations to explicitly correlated coupled-cluster singles and doubles, CCSD-F12. , 2010, The Journal of chemical physics.

[33]  J. Noga,et al.  Explicitly correlated coupled cluster F12 theory with single and double excitations. , 2008, The Journal of chemical physics.

[34]  Martin Head-Gordon,et al.  A second-order perturbative correction to the coupled-cluster singles and doubles method: CCSD(2) , 2001 .

[35]  J. Noga,et al.  Explicitly correlated R12 coupled cluster calculations for open shell systems , 2000 .

[36]  J. Rychlewski,et al.  Many‐electron explicitly correlated Gaussian functions. I. General theory and test results , 1993 .

[37]  R. Christoffersen,et al.  Explicitly correlated configuration interaction wavefunctions using spherical Gaussians. Formulation and initial application to LiH , 1975 .

[38]  John F. Stanton,et al.  INVESTIGATION OF AN ASYMMETRIC TRIPLE-EXCITATION CORRECTION FOR COUPLED-CLUSTER ENERGIES , 1998 .

[39]  L. C. Lee,et al.  Lyman‐α and Balmer‐series fluorescence from hydrogen photofragments of H2O vapor , 1979 .

[40]  K. Hirao,et al.  Improved virtual orbitals in the extended basis function space , 1977 .

[41]  Wim Klopper,et al.  CC-R12, a correlation cusp corrected coupled-cluster method with a pilot application to the Be2 potential curve , 1992 .

[42]  S. Ten-no A feasible transcorrelated method for treating electronic cusps using a frozen Gaussian geminal , 2000 .

[43]  W. Kutzelnigg,et al.  Configuration interaction calculations with terms linear in the interelectronic coordinate for the ground state of H+3. A benchmark study , 1993 .

[44]  L. Wolniewicz,et al.  Potential-Energy Curves for the X1Sg+, b3Su+, and C1Pu States of the Hydrogen Molecule , 1965 .

[45]  Robert J. Gdanitz,et al.  An accurate interaction potential for neon dimer (Ne2) , 2001 .

[46]  R. Bartlett,et al.  A study of Be2 with many‐body perturbation theory and a coupled‐cluster method including triple excitations , 1984 .

[47]  S. F. Boys,et al.  The integral formulae for the variational solution of the molecular many-electron wave equation in terms of Gaussian functions with direct electronic correlation , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[48]  Christof Hättig,et al.  Explicitly Correlated Coupled-Cluster Theory , 2010 .

[49]  Thom H. Dunning,et al.  Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon , 1995 .

[50]  Jian Wang,et al.  Counterintuitive Coulomb hole around the bond midplane. , 2010, The Journal of chemical physics.

[51]  Seiichiro Ten-no,et al.  Explicitly correlated second order perturbation theory: introduction of a rational generator and numerical quadratures. , 2004, The Journal of chemical physics.

[52]  Konrad Patkowski,et al.  Argon pair potential at basis set and excitation limits. , 2010, The Journal of chemical physics.

[53]  K. Szalewicz,et al.  High-accuracy Compton profile of molecular hydrogen from explicitly correlated Gaussian wave function , 1979 .

[54]  L. Adamowicz,et al.  An effective method for generating nonadiabatic many-body wave function using explicitly correlated Gaussian-type functions , 1991 .

[55]  E. Hylleraas Über den Grundzustand des Heliumatoms , 1928 .

[56]  Wim Klopper,et al.  Explicitly correlated second-order Møller–Plesset methods with auxiliary basis sets , 2002 .

[57]  Edward F. Valeev,et al.  Perturbative correction for the basis set incompleteness error of complete-active-space self-consistent field. , 2010, The Journal of chemical physics.

[58]  Peter M W Gill,et al.  Approaching the Hartree-Fock limit by perturbative methods. , 2009, The Journal of chemical physics.

[59]  C. Umrigar,et al.  Excited states of methylene from quantum Monte Carlo. , 2009, The Journal of chemical physics.

[60]  Edward F. Valeev,et al.  Simple coupled-cluster singles and doubles method with perturbative inclusion of triples and explicitly correlated geminals: The CCSD(T)R12 model. , 2008, The Journal of chemical physics.

[61]  John F. Stanton,et al.  A simple correction to final state energies of doublet radicals described by equation-of-motion coupled cluster theory in the singles and doubles approximation , 1997 .

[62]  Jim Hefferon,et al.  Linear Algebra , 2012 .

[63]  D. Tew Second order coalescence conditions of molecular wave functions. , 2008, The Journal of chemical physics.

[64]  Christof Hättig,et al.  Quintuple-ζ quality coupled-cluster correlation energies with triple-ζ basis sets , 2007 .

[65]  R. Metzger,et al.  Piecewise polynomial configuration interaction natural orbital study of 1 s2 helium , 1979 .

[66]  D. Tew,et al.  Explicitly correlated coupled-cluster theory using cusp conditions. I. Perturbation analysis of coupled-cluster singles and doubles (CCSD-F12). , 2010, The Journal of chemical physics.

[67]  H. Monkhorst,et al.  Random tempering of Gaussian‐type geminals. I. Atomic systems , 1986 .

[68]  Robert J. Gdanitz,et al.  Accurately solving the electronic Schrödinger equation of atoms and molecules using explicitly correlated (r12-)MR-CI: the ground state potential energy curve of N2 , 1998 .

[69]  P. Löwdin Studies in Perturbation Theory. IV. Solution of Eigenvalue Problem by Projection Operator Formalism , 1962 .

[70]  Seiichiro Ten-no,et al.  New implementation of second-order Møller-Plesset perturbation theory with an analytic Slater-type geminal. , 2007, The Journal of chemical physics.

[71]  P. Taylor,et al.  Accurate quantum‐chemical calculations: The use of Gaussian‐type geminal functions in the treatment of electron correlation , 1996 .

[72]  Trygve Helgaker,et al.  Highly accurate calculations of molecular electronic structure , 1999 .

[73]  K. Singer,et al.  The use of Gaussian (exponential quadratic) wave functions in molecular problems - I. General formulae for the evaluation of integrals , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[74]  J. Noga,et al.  On the one-particle basis set relaxation in R12 based theories , 2009 .

[75]  Robert J. Gdanitz Accurately solving the electronic Schrödinger equation of atoms and molecules using explicitly correlated (r12-)MR-CI. VI. The helium dimer (He2) revisited , 2001 .

[76]  Frederick R. Manby,et al.  R12 methods in explicitly correlated molecular electronic structure theory , 2006 .

[77]  S. Ten-no,et al.  Density fitting for the decomposition of three-electron integrals in explicitly correlated electronic structure theory , 2003 .

[78]  E. Clementi,et al.  The Hylleraas‐CI method in molecular calculations. III. Implementation and numerical verification of a three‐electron many‐center theory , 1991 .

[79]  Robert J. Gdanitz,et al.  Accurately solving the electronic Schrödinger equation of atoms and molecules using explicitly correlated (r12-) multireference configuration interaction. III. Electron affinities of first-row atoms , 1999 .

[80]  Edward F. Valeev,et al.  Scalar relativistic explicitly correlated R12 methods. , 2010, The Journal of chemical physics.

[81]  Hans-Joachim Werner,et al.  A simple and efficient CCSD(T)-F12 approximation. , 2007, The Journal of chemical physics.

[82]  Juana Vázquez,et al.  High-accuracy extrapolated ab initio thermochemistry. II. Minor improvements to the protocol and a vital simplification. , 2006, The Journal of chemical physics.

[83]  W. Lakin On Singularities in Eigenfunctions , 1965 .

[84]  C. Hättig,et al.  Recent Advances in Explicitly Correlated Coupled-Cluster Response Theory for Excited States and Optical Properties , 2010 .

[85]  K. Szalewicz,et al.  New effective strategy of generating Gaussian‐type geminal basis sets for correlation energy calculations , 1994 .

[86]  T. Helgaker,et al.  Second-order Møller-Plesset calculations on the water molecule using Gaussian-type orbital and Gaussian-type geminal theory. , 2008, Physical chemistry chemical physics : PCCP.

[87]  James S. Sims,et al.  Combined Configuration-Interaction—Hylleraas-Type Wave-Function Study of the Ground State of the Beryllium Atom , 1971 .

[88]  Hans-Joachim Werner,et al.  Simplified CCSD(T)-F12 methods: theory and benchmarks. , 2009, The Journal of chemical physics.

[89]  Piotr Piecuch,et al.  Renormalized coupled-cluster methods exploiting left eigenstates of the similarity-transformed Hamiltonian. , 2005, The Journal of chemical physics.

[90]  Edward F. Valeev,et al.  Comparison of one-particle basis set extrapolation to explicitly correlated methods for the calculation of accurate quartic force fields, vibrational frequencies, and spectroscopic constants: application to H2O, N2H+, NO2+, and C2H2. , 2010, The Journal of chemical physics.

[91]  C. Coulson,et al.  Electron Correlation in the Ground State of Helium , 1961 .

[92]  Peter Pulay,et al.  Second-order Møller–Plesset calculations with dual basis sets , 2003 .

[93]  Arne Lüchow,et al.  Accurate upper and lower bounds to the 2S states of the lithium atom , 1994 .

[94]  Toru Shiozaki,et al.  Communication: Second-order multireference perturbation theory with explicit correlation: CASPT2-F12. , 2010, The Journal of chemical physics.

[95]  Lubos Mitas,et al.  Quantum Monte Carlo for atoms, molecules and solids , 2009 .

[96]  Trygve Helgaker,et al.  Basis-set convergence of correlated calculations on water , 1997 .

[97]  Ajit J. Thakkar,et al.  Compact and accurate integral-transform wave functions. I. The 1 /sup 1/S state of the helium-like ions from H/sup -/ through Mg/sup 10 +/ , 1977 .

[98]  H. Nakatsuji,et al.  Solving the Schrödinger equation of atoms and molecules without analytical integration based on the free iterative-complement-interaction wave function. , 2007, Physical review letters.

[99]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[100]  J. Olsen,et al.  Basis-set convergence of the two-electron Darwin term , 2000 .

[101]  N. Handy,et al.  CI-Hylleraas variational calculation on the ground state of the neon atom , 1976 .

[102]  Edward F. Valeev Improving on the resolution of the identity in linear R12 ab initio theories , 2004 .

[103]  Toru Shiozaki,et al.  Explicitly correlated multireference configuration interaction with multiple reference functions: avoided crossings and conical intersections. , 2011, The Journal of chemical physics.

[104]  J. G. Zabolitzky,et al.  A new functional for variational calculation of atomic and molecular second-order correlation energies , 1982 .

[105]  R. Gdanitz,et al.  Accurately solving the electronic Schrodinger equation of atoms and molecules using explicitly correlated (r12-) multireference configuration interaction. VII. The hydrogen fluoride molecule. , 2005, The Journal of chemical physics.

[106]  Jeppe Olsen,et al.  Excitation energies of BH, CH2 and Ne in full configuration interaction and the hierarchy CCS, CC2, CCSD and CC3 of coupled cluster models , 1995 .

[107]  T. Martínez,et al.  Variational geminal-augmented multireference self-consistent field theory: two-electron systems. , 2010, The Journal of chemical physics.

[108]  H. James,et al.  On the Convergence of the Hylleraas Variational Method , 1937 .

[109]  L. Wolniewicz NONADIABATIC ENERGIES OF THE GROUND STATE OF THE HYDROGEN MOLECULE , 1995 .

[110]  J. Noga,et al.  Second order explicitly correlated R12 theory revisited: a second quantization framework for treatment of the operators' partitionings. , 2007, The Journal of chemical physics.

[111]  J. C. Slater The Normal State of Helium , 1928 .

[112]  H. James,et al.  The Ground State of the Hydrogen Molecule , 1933 .

[113]  R. T. Pack,et al.  Cusp Conditions for Molecular Wavefunctions , 1966 .

[114]  Stanisl,et al.  Second‐order correlation energy for H2O using explicitly correlated Gaussian geminals , 1995 .

[115]  G. Breit Separation of Angles in the Two-Electron Problem , 1930 .

[116]  Hans-Joachim Werner,et al.  Explicitly correlated RMP2 for high-spin open-shell reference states. , 2008, The Journal of chemical physics.

[117]  J. Noga,et al.  Implementation of the CCSD(T)-F12 method using cusp conditions. , 2008, Physical chemistry chemical physics : PCCP.

[118]  Kimihiko Hirao,et al.  Multireference Møller-Plesset method , 1992 .

[119]  P. Jensen,et al.  The potential surface and stretching frequencies of X̃ 3B1 methylene (CH2) determined from experiment using the Morse oscillator‐rigid bender internal dynamics Hamiltonian , 1988 .

[120]  D. Tew,et al.  Implementation of the full explicitly correlated coupled-cluster singles and doubles model CCSD-F12 with optimally reduced auxiliary basis dependence. , 2008, The Journal of chemical physics.

[121]  Werner Kutzelnigg,et al.  Hund's rules, the alternating rule, and symmetry holes , 1993 .

[122]  J. Noga,et al.  Coupled cluster theory that takes care of the correlation cusp by inclusion of linear terms in the interelectronic coordinates , 1994 .

[123]  W. Klopper,et al.  Analytic Calculation of First-order Molecular Properties at the Explicitly-correlated Second-order Møller-Plesset Level , 2010 .

[124]  Edward F. Valeev,et al.  Second-order Møller-Plesset theory with linear R12 terms (MP2-R12) revisited: auxiliary basis set method and massively parallel implementation. , 2004, The Journal of chemical physics.

[125]  J. Stanton Why CCSD(T) works: a different perspective , 1997 .

[126]  A. Köhn Explicitly correlated coupled-cluster theory using cusp conditions. II. Treatment of connected triple excitations. , 2010, The Journal of chemical physics.

[127]  C. Schwartz,et al.  Importance of Angular Correlations between Atomic Electrons , 1962 .

[128]  H. Kleindienst,et al.  NONRELATIVISTIC ENERGIES FOR THE BE ATOM : DOUBLE-LINKED HYLLERAAS-CI CALCULATION , 1998 .

[129]  Seiichiro Ten-no,et al.  Initiation of explicitly correlated Slater-type geminal theory , 2004 .

[130]  Gordon W. F. Drake,et al.  Ground-state energies for helium, H - , and Ps - , 2002 .

[131]  P. Taylor,et al.  Application of Gaussian-type geminals in local second-order Møller-Plesset perturbation theory. , 2006, The Journal of chemical physics.

[132]  R. Gdanitz,et al.  Accurately solving the electronic Schrodinger equation of small atoms and molecules using explicitly correlated (r12-)MR-CI. VIII. Valence excited states of methylene (CH2). , 2005, The Journal of chemical physics.

[133]  S. Ten-no,et al.  Explicitly correlated equation-of-motion coupled-cluster methods for excited and electron-attached states. , 2010, The Journal of chemical physics.

[134]  N. Handy,et al.  The determination of energies and wavefunctions with full electronic correlation , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[135]  A. Weiss,et al.  ANALYTICAL SELF-CONSISTENT FIELD FUNCTIONS FOR THE ATOMIC CONFIGURATIONS 1s$sup 2$, 1s$sup 2$2s, AND 1s$sup 2$2s$sup 2$ , 1960 .

[136]  P. Löwdin Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction , 1955 .

[137]  W. Lester,et al.  Gaussian Correlation Functions: Two‐Electron Systems , 1964 .

[138]  Wim Klopper,et al.  Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. I. General theory , 1991 .

[139]  A. Köhn Explicitly correlated connected triple excitations in coupled-cluster theory. , 2009, The Journal of chemical physics.

[140]  Edward F. Valeev,et al.  Coupled-cluster methods with perturbative inclusion of explicitly correlated terms: a preliminary investigation. , 2008, Physical chemistry chemical physics : PCCP.

[141]  K. Hirao,et al.  Improved virtual orbitals in the potential of the SCF ion , 1977 .

[142]  T. Helgaker,et al.  Accurate quantum-chemical calculations using Gaussian-type geminal and Gaussian-type orbital basis sets: applications to atoms and diatomics. , 2007, Physical chemistry chemical physics : PCCP.

[143]  C. Hättig,et al.  Structures and harmonic vibrational frequencies for excited states of diatomic molecules with CCSD(R12) and CCSD(F12) models. , 2009, The Journal of chemical physics.

[144]  Robert J. Gdanitz,et al.  A formulation of multiple-reference CI with terms linear in the interelectronic distances , 1993 .

[145]  Edward F. Valeev,et al.  Variational formulation of perturbative explicitly-correlated coupled-cluster methods. , 2008, Physical chemistry chemical physics : PCCP.

[146]  So Hirata,et al.  Explicitly correlated coupled-cluster singles and doubles method based on complete diagrammatic equations. , 2008, The Journal of chemical physics.

[147]  F. Manby,et al.  Efficient Explicitly Correlated Coupled-Cluster Approximations , 2010 .

[148]  James S. Sims,et al.  High‐precision Hy–CI variational calculations for the ground state of neutral helium and helium‐like ions , 2002 .

[149]  P. Knowles,et al.  An efficient internally contracted multiconfiguration–reference configuration interaction method , 1988 .

[150]  R. Bartlett,et al.  Towards a full CCSDT model for electron correlation. CCSDT-n models , 1987 .

[151]  Robert T. Brown,et al.  CONFIGURATION INTERACTION IN TWO- AND THREE-ELECTRON ATOMS. , 1966 .

[152]  H. Schwartz Ritz-Hylleraas Solutions of the Ground State of Two-Electron Atoms Involving Fractional Powers , 1960 .

[153]  S. Ten-no A simple F12 geminal correction in multi-reference perturbation theory , 2007 .

[154]  Rigoberto Hernandez,et al.  On the accuracy limits of orbital expansion methods: Explicit effects of k-functions on atomic and molecular energies , 2003 .

[155]  D. Tew,et al.  A comparison of linear and nonlinear correlation factors for basis set limit Møller-Plesset second order binding energies and structures of He2, Be2, and Ne2. , 2006, The Journal of chemical physics.

[156]  Juana Vázquez,et al.  HEAT: High accuracy extrapolated ab initio thermochemistry. , 2004, The Journal of chemical physics.

[157]  J. Noga,et al.  The accuracy of atomization energies from explicitly correlated coupled-cluster calculations , 2001 .

[158]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[159]  S. Ten-no,et al.  Biorthogonal approach for explicitly correlated calculations using the transcorrelated Hamiltonian , 2001 .

[160]  R. Gdanitz Accurately solving the electronic Schrödinger equation of atoms and molecules using explicitly correlated (r12-)MR-CI. , 1999 .

[161]  So Hirata,et al.  Perturbative corrections to coupled-cluster and equation-of-motion coupled-cluster energies: A determinantal analysis , 2001 .

[162]  J. Almlöf,et al.  Dual basis sets in calculations of electron correlation , 1991 .

[163]  W. Klopper,et al.  Coupled-cluster theory with simplified linear-r(12) corrections: the CCSD(R12) model. , 2005, The Journal of chemical physics.

[164]  Martin Head-Gordon,et al.  A second-order correction to singles and doubles coupled-cluster methods based on a perturbative expansion of a similarity-transformed Hamiltonian , 2000 .

[165]  So Hirata,et al.  Higher-order explicitly correlated coupled-cluster methods. , 2009, The Journal of chemical physics.

[166]  D. Tew,et al.  Towards the Hartree-Fock and coupled-cluster singles and doubles basis set limit: A study of various models that employ single excitations into a complementary auxiliary basis set. , 2010, The Journal of chemical physics.

[167]  P. Knowles,et al.  An efficient method for the evaluation of coupling coefficients in configuration interaction calculations , 1988 .

[168]  Robert J. Gdanitz ACCURATELY SOLVING THE ELECTRONIC SCHRODINGER EQUATION OF ATOMS AND MOLECULES USING EXPLICITLY CORRELATED (R12-)MR-CI IV. THE HELIUM DIMER (HE2) , 1999 .

[169]  Edward F. Valeev,et al.  Universal perturbative explicitly correlated basis set incompleteness correction. , 2009, The Journal of chemical physics.

[170]  R. Berry,et al.  Hund's rule , 1985, Nature.

[171]  W. Hackbusch,et al.  Quantum Monte Carlo study of the transcorrelated method for correlation factors , 2010 .

[172]  Poul Jørgensen,et al.  The second-order approximate coupled cluster singles and doubles model CC2 , 1995 .

[173]  C. Hättig,et al.  Highly accurate CCSD(R12) and CCSD(F12) optical response properties using standard triple-zeta basis sets. , 2009, The Journal of chemical physics.

[174]  W. Klopper,et al.  Inclusion of the (T) triples correction into the linear‐r12 corrected coupled‐cluster model CCSD(R12) , 2006 .

[175]  Werner Kutzelnigg,et al.  r12-Dependent terms in the wave function as closed sums of partial wave amplitudes for large l , 1985 .

[176]  E. Hylleraas Über den Grundterm der Zweielektronenprobleme von H−, He, Li+, Be++ usw. , 1930 .

[177]  So Hirata,et al.  Combined coupled-cluster and many-body perturbation theories. , 2004, The Journal of chemical physics.

[178]  R. Bartlett,et al.  Elimination of Coulombic infinities through transformation of the Hamiltonian , 1998 .

[179]  S. J. Cole,et al.  Towards a full CCSDT model for electron correlation , 1985 .

[180]  Toru Shiozaki,et al.  Explicitly correlated multireference configuration interaction: MRCI-F12. , 2011, The Journal of chemical physics.

[181]  K. Szalewicz,et al.  Gaussian geminals in explicitly correlated coupled cluster theory including single and double excitations , 1999 .

[182]  G. A. Petersson,et al.  Interference effects in pair correlation energies: Helium L‐limit energies , 1981 .

[183]  R. Hill,et al.  Rates of convergence and error estimation formulas for the Rayleigh–Ritz variational method , 1985 .

[184]  Edward F. Valeev Combining explicitly correlated R12 and Gaussian geminal electronic structure theories. , 2006, The Journal of chemical physics.

[185]  N. Handy,et al.  A condition to remove the indeterminacy in interelectronic correlation functions , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[186]  Kirk A Peterson,et al.  Optimized auxiliary basis sets for explicitly correlated methods. , 2008, The Journal of chemical physics.

[187]  Debashis Mukherjee,et al.  Normal order and extended Wick theorem for a multiconfiguration reference wave function , 1997 .

[188]  J. Simons,et al.  Transition-state energy and geometry, exothermicity, and van der Waals wells on the F + H2 --> FH + H ground-state surface calculated at the r12-ACPF-2 level. , 2006, The journal of physical chemistry. A.