Analysis of terahertz surface emitting quantum-cascade lasers

An analysis of surface-emitting terahertz quantum-cascade lasers operating at wavelengths near 100 /spl mu/m is presented. The devices use distributed feedback through second-order Bragg metal gratings to generate strong emission of radiation normal to the laser surface. The analysis is based on coupling between the exact Floquet-Bloch eigenmodes of infinite periodic structures in finite length devices. The results show performance of surface-emitting terahertz lasers comparable to edge-emitting devices, with high radiative efficiencies and low threshold gains. Using phase-shifts in the grating, high-quality single-lobe beams in the farfield are obtained.

[1]  D. Mittleman,et al.  T-ray tomography , 1997, CLEO '97., Summaries of Papers Presented at the Conference on Lasers and Electro-Optics.

[2]  M. Nuss,et al.  Imaging with terahertz waves. , 1995, Optics letters.

[3]  Paul Harrison,et al.  Terahertz sources and systems , 2001 .

[4]  W. K. Chan,et al.  Single-lobe, surface-normal beam surface emission from second-order distributed feedback lasers with half-wave grating phase shift , 2003 .

[5]  Ya Yan Lu,et al.  A mode-preserving perfectly matched layer for optical waveguides , 2003 .

[6]  H. Kogelnik,et al.  Coupled‐Wave Theory of Distributed Feedback Lasers , 1972 .

[7]  Erich Gornik,et al.  Surface-emitting distributed feedback quantum-cascade lasers , 2000 .

[8]  C. Hines Electromagnetic Waves , 2021, Nature.

[9]  K. Siebert,et al.  Terahertz dark-field imaging of biomedical tissue. , 2001, Optics express.

[10]  G. Cho,et al.  Time-domain transillumination of biological tissues with terahertz pulses. , 2000, Optics letters.

[11]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[12]  Qing Hu,et al.  Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators , 2005 .

[13]  D. Mittleman,et al.  T-ray imaging , 1996 .

[14]  Luke R. Wilson,et al.  Single-mode surface-emitting quantum-cascade lasers , 2005 .

[15]  S. H. Macomber,et al.  Analysis of grating surface emitting lasers , 1990 .

[16]  Dan Botez,et al.  Surface-emitting, single-lobe operation from second-order distributed-reflector lasers with central grating phaseshift , 2001 .

[17]  Qing Hu,et al.  Resonant-phonon terahertz quantum-cascade laser operating at 2.1 THz (λ≃141 µm) , 2004 .

[18]  B. Williams,et al.  3.4 THz quantum cascade laser operating above liquid nitrogen temperature , 2003 .

[19]  Qing Hu,et al.  Continuous-wave operation of terahertz quantum-cascade lasers above liquid-nitrogen temperature , 2004 .

[20]  E. Gornik,et al.  Analysis of TM-polarized DFB laser structures with metal surface gratings , 2000, IEEE Journal of Quantum Electronics.

[21]  Stephan W Koch,et al.  Physics of Optoelectronic Devices , 1995 .

[22]  Qing Hu,et al.  Terahertz quantum-cascade laser operating up to 137 K , 2003 .

[23]  A. Davies,et al.  Continuous-wave operation of terahertz quantum-cascade lasers , 2003 .

[24]  D. Mittleman,et al.  Chemical recognition of gases and gas mixtures with terahertz waves. , 1996, Optics letters.

[25]  Qing Hu,et al.  Terahertz quantum-cascade laser at λ≈100 μm using metal waveguide for mode confinement , 2003 .

[26]  G. V. Chester,et al.  Solid State Physics , 2000 .

[27]  Qing Hu,et al.  3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation , 2003 .

[28]  Mattias Beck,et al.  Surface-emitting 10.1 mum quantum-cascade distributed feedback lasers , 1999 .

[29]  Giles Davies,et al.  High power quantum cascade lasers operating at λ≃87 and 130μm , 2004 .

[30]  Dan Botez,et al.  Analysis of surface-emitting second-order distributed feedback lasers with central grating phaseshift , 2003 .