γ-Active Constraints in Convex Semi-Infinite Programming
暂无分享,去创建一个
Juan Enrique Martínez-Legaz | Carlos Armando Zetina | J. Martínez-Legaz | M. Todorov | Maxim Ivanov Todorov | C. Zetina
[1] Marco A. López,et al. A Sup-Function Approach to Linear Semi-Infinite Optimization , 2003 .
[2] A. Kaplan,et al. Numerical treatment of an asset price model with non-stochastic uncertainty , 2002 .
[3] Olga Kostyukova,et al. Sufficient optimality conditions for convex semi-infinite programming , 2010, Optim. Methods Softw..
[4] M. A. López-Cerdá,et al. Linear Semi-Infinite Optimization , 1998 .
[5] M. Sion. On general minimax theorems , 1958 .
[6] Miguel A. Goberna,et al. From linear to convex systems: consistency, Farkas' Lemma and applications , 2006 .
[7] Judith Timmer,et al. Semi-Infinite Assignment and Transportation Games , 2000 .
[8] Francisco Guerra,et al. On feasible sets defined through Chebyshev approximation , 1998, Math. Methods Oper. Res..
[9] Marco Dall'Aglio,et al. On Some Applications of LSIP to Probability and Statistics , 2001 .
[10] Ekkehard W. Sachs. Semi-Infinite Programming in Control , 1998 .
[11] Takashi Tsuchiya,et al. Numerical experiments with universal barrier functions for cones of Chebyshev systems , 2008, Comput. Optim. Appl..
[12] Miguel A. Goberna,et al. On the Stability of the Boundary of the Feasible Set in Linear Optimization , 2003 .
[13] W. Oettli,et al. On Regularity and Optimality in Nonlinear Semi-Infinite Programming , 2001 .
[14] Marco A. López,et al. On the Stability of the Feasible Set in Linear Optimization , 2001 .
[15] Marco A. López,et al. Extended Active Constraints in Linear Optimization with Applications , 2003, SIAM J. Optim..
[16] Marco A. López,et al. New Farkas-type constraint qualifications in convex infinite programming , 2007 .
[17] Alexander Potchinkov. The Design of Nonrecursive Digital Filters via Convex Optimization , 1998 .
[18] Lars Abbe. Two Logarithmic Barrier Methods for Convex Semi-Infinite Problems , 2001 .
[19] Chih-Jen Lin,et al. Solving General Capacity Problem by Relaxed Cutting Plane Approach , 2001, Ann. Oper. Res..