The dominating set problem is fixed parameter tractable for graphs of bounded genus

We describe an algorithm for the dominating set problem with time complexity O((4g+40)kn2) for graphs of bounded genus g ≥ 1, where k is the size of the set. It has previously been shown that this problem is fixed parameter tractable for planar graphs. We give a simpler proof for the previous O(8kn2) result for planar graphs. Our method is a refinement of the earlier techniques.

[1]  Rolf Niedermeier,et al.  Efficient Data Reduction for DOMINATING SET: A Linear Problem Kernel for the Planar Case , 2002, SWAT.

[2]  Stefan Arnborg,et al.  Linear time algorithms for NP-hard problems restricted to partial k-trees , 1989, Discret. Appl. Math..

[3]  Carsten Thomassen,et al.  Embeddings and minors , 1996 .

[4]  Rolf Niedermeier,et al.  Parameterized complexity: exponential speed-up for planar graph problems , 2001, J. Algorithms.

[5]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[6]  Carsten Thomassen,et al.  The Graph Genus Problem is NP-Complete , 1989, J. Algorithms.

[7]  Rolf Niedermeier,et al.  Graph Separators: A Parameterized View , 2001, COCOON.

[8]  Bojan Mohar,et al.  Embedding graphs in an arbitrary surface in linear time , 1996, STOC '96.

[9]  R. Downey,et al.  Parameterized Computational Feasibility , 1995 .

[10]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[11]  Rolf Niedermeier,et al.  Refined Search Tree Technique for DOMINATING SET on Planar Graphs , 2001, MFCS.

[12]  Rolf Niedermeier,et al.  Fixed Parameter Algorithms for PLANAR DOMINATING SET and Related Problems , 2000, SWAT.

[13]  Paul D. Seymour,et al.  Graph minors. IV. Tree-width and well-quasi-ordering , 1990, J. Comb. Theory, Ser. B.

[14]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[15]  Michael R. Fellows,et al.  The Dominating Set Problem Is Fixed Parameter Tractable for Graphs of Bounded Genus , 2002, SWAT.

[16]  C. Thomassen The Jordan-Scho¨nflies theorem and the classification of surfaces , 1992 .

[17]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.