Generating Recommendation Evidence Using Translation Model

Entity recommendation, providing entity suggestions relevant to the query that a user is searching for, has become a key feature of today's web search engine. Despite the fact that related entities are relevant to users' search queries, sometimes users cannot easily understand the recommended entities without evidences. This paper proposes a statistical model consisting of four sub-models to generate evidences for entities, which can help users better understand each recommended entity, and figure out the connections between the recommended entities and a given query. The experiments show that our method is domain independent, and can generate catchy and interesting evidences in the application of entity recommendation.

[1]  Lluís Màrquez i Villodre,et al.  SVMTool: A general POS Tagger Generator Based on Support Vector Machines , 2004, LREC.

[2]  Fernando Pereira,et al.  Multilingual Dependency Analysis with a Two-Stage Discriminative Parser , 2006, CoNLL.

[3]  M. de Rijke,et al.  Learning to Explain Entity Relationships in Knowledge Graphs , 2015, ACL.

[4]  Ting Liu,et al.  Application-driven Statistical Paraphrase Generation , 2009, ACL.

[5]  Kathleen McKeown,et al.  Lexicalized Markov Grammars for Sentence Compression , 2007, NAACL.

[6]  Mirella Lapata,et al.  An abstractive approach to sentence compression , 2013, TIST.

[7]  Andrew McCallum,et al.  Chinese Segmentation and New Word Detection using Conditional Random Fields , 2004, COLING.

[8]  Wei Chu,et al.  Learning to Recommend Related Entities to Search Users , 2015, WSDM.

[9]  Philipp Koehn,et al.  (Meta-) Evaluation of Machine Translation , 2007, WMT@ACL.

[10]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.

[11]  Vikas Sindhwani,et al.  Data Quality from Crowdsourcing: A Study of Annotation Selection Criteria , 2009, HLT-NAACL 2009.

[12]  Emiel Krahmer,et al.  Sentence Simplification by Monolingual Machine Translation , 2012, ACL.

[13]  Paul Buitelaar,et al.  Insights into Entity Recommendation in Web Search , 2015, IESD@ISWC.

[14]  Eugene Charniak,et al.  Supervised and Unsupervised Learning for Sentence Compression , 2005, ACL.

[15]  Yang Li,et al.  Mining evidences for named entity disambiguation , 2013, KDD.

[16]  Roi Blanco,et al.  Entity Recommendations in Web Search , 2013, SEMWEB.

[17]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[18]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[19]  Chris Quirk,et al.  Monolingual Machine Translation for Paraphrase Generation , 2004, EMNLP.

[20]  Jianfeng Gao,et al.  Clickthrough-based translation models for web search: from word models to phrase models , 2010, CIKM.

[21]  Jiawei Han,et al.  On building entity recommender systems using user click log and freebase knowledge , 2014, WSDM.

[22]  Franz Josef Och,et al.  Minimum Error Rate Training in Statistical Machine Translation , 2003, ACL.

[23]  Aron Culotta,et al.  Dependency Tree Kernels for Relation Extraction , 2004, ACL.

[24]  Daniel Marcu,et al.  Statistical Phrase-Based Translation , 2003, NAACL.

[25]  Wanxiang Che,et al.  Sentence Compression for Aspect-Based Sentiment Analysis , 2015, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[26]  Andrew McCallum,et al.  Using Maximum Entropy for Text Classification , 1999 .

[27]  Ralph A. Szweda,et al.  Information processing management , 1972 .

[28]  Tadashi Nomoto,et al.  Discriminative sentence compression with conditional random fields , 2007, Inf. Process. Manag..

[29]  Jean Carletta,et al.  Assessing Agreement on Classification Tasks: The Kappa Statistic , 1996, CL.

[30]  K. Minton Extraction Patterns for Information Extraction Tasks : A Survey , 1999 .