Robust quadratic control of discrete-time singular Markov jump systems with bounded transition probabilities

The quadratic control problem for discrete-time singular Markov jump systems with parameter uncertainties is discussed. The weighting matrix in quadratic cost function is indefinite. For full and partial knowledge of transition probabilities cases, state feedback controllers are designed based on linear matrix inequalities (LMIs) methods which guarantee that the closed-loop discrete-time singular Markov jump systems are regular, causal and stochastically stable, and the cost value has a zero lower bound and a finite upper bound. A numerical example to illustrate the effectiveness of the method is given in the paper.

[1]  Shengyuan Xu,et al.  Robust Control and Filtering of Singular Systems , 2006 .

[2]  E. Boukas,et al.  H∞ control for discrete‐time Markovian jump linear systems with partly unknown transition probabilities , 2009 .

[3]  Shengyuan Xu,et al.  Robust control of descriptor discrete-time Markovian jump systems , 2007, Int. J. Control.

[4]  Chenghui Zhang,et al.  Robust stability and H-infinity control for uncertain discrete-time Markovian jump singular systems , 2008 .

[5]  El-Kébir Boukas,et al.  Stochastic stability and guaranteed cost control of discrete-time uncertain systems with Markovian jumping parameters , 1997 .

[6]  L. Xie,et al.  Robust H^∞ Control for Linear Systems with Norm-Bounded Time-Varying Uncertainty , 1990 .

[7]  S. Campbell Singular systems of differential equations II , 1980 .

[8]  I. Petersen A stabilization algorithm for a class of uncertain linear systems , 1987 .

[9]  Peng Shi,et al.  Transition probability bounds for the stochastic stability robustness of continuous- and discrete-time Markovian jump linear systems , 2006, Autom..

[10]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[11]  D. Luenberger,et al.  SINGULAR DYNAMIC LEONTIEF SYSTEMS1 , 1977 .

[12]  K. Loparo,et al.  Stability and control of discrete-time jump linear systems , 1991 .

[13]  New Results on Stability and Stabilizability of Linear Systems with Random Abrupt Changes , 2007 .

[14]  James Lam,et al.  On robust stabilization of Markovian jump systems with uncertain switching probabilities , 2005, Autom..

[15]  Robert Sheldon Control of Singular Systems with Random Abrupt Changes , 2000 .

[16]  M. Fragoso,et al.  Discrete-time LQ-optimal control problems for infinite Markov jump parameter systems , 1995, IEEE Trans. Autom. Control..

[17]  Wuneng Zhou,et al.  Guaranteed cost control for uncertain singular system with Markovian jumping parameters , 2008, 2008 7th World Congress on Intelligent Control and Automation.

[18]  Shuping Ma,et al.  Singular LQ problem for nonregular descriptor systems , 2002, IEEE Trans. Autom. Control..

[19]  El Kebir Boukas,et al.  Static output feedback control for stochastic hybrid systems: LMI approach , 2006, Autom..

[20]  R. P. Marques,et al.  Constrained Quadratic Control of Discrete-Time Markovian Jump Linear Systems , 1997 .

[21]  Lihua Xie,et al.  Robust H/sub infinity / control for linear systems with norm-bounded time-varying uncertainty , 1992 .

[22]  Oswaldo Luiz do Valle Costa,et al.  Constrained quadratic state feedback control of discrete-time Markovian jump linear systems , 1999, Autom..

[23]  D. Hill,et al.  Stability theory for differential/algebraic systems with application to power systems , 1990 .

[24]  E. Boukas,et al.  On the robustness of jump linear quadratic control , 1997 .

[25]  Shengyuan Xu,et al.  Robust stability and stabilization of discrete singular systems: an equivalent characterization , 2004, IEEE Transactions on Automatic Control.

[26]  A. Willsky,et al.  Discrete-time Markovian-jump linear quadratic optimal control , 1986 .