Fabrication of waveguides in Gorilla Glass with fs-pulses and its nonlinear features (Conference Presentation)

Ultrafast waveguide fabrication has been an active research area since its demonstration, leading to numerous applications. Recently reported high quality waveguide in Gorilla Glass has promoted it as a good candidate for optical devices. In this study, 120-fs laser pulses centered at 520, 650 and 775 nm at a repetition rate of 1 kHz were applied to investigate the influence of the wavelength on micromachining. Grooves ablated onto Gorilla Glass surface with different pulse energies and scanning speeds presented similar features and threshold pulse energy, regardless the excitation wavelength. Fifteen millimeter long waveguides were produced 100 μm below sample surface with pulse energy varying from 250 nJ up to 5 μJ (scanning speed of 200 μm/s). Waveguides longitudinal and transversal profiles were analyzed via optical microscopy and its guiding properties characterized in an objective-lens based coupling system at 633 and 775 nm. Guide modes intensity distribution show that for waveguides fabricated with higher pulse energy light is guided further from the core, while for lower fabrication energy light is guided closer to the center in a more fundamental mode. Considering that light traveling through 15 mm of material in confined mode, we coupled 775 nm fs-pulses into fabricated waveguides. By monitoring the spectrum of the guided light as input pulse energy increased, spectral broadening assigned to self-phase modulation effects was observed followed by white-light generation starting at 450 nm. In conclusion, we found that micromachining on Gorilla Glass is wavelength independent and inscribed waveguides present desirable nonlinear features.