A Dimension‐reduced Pressure Solver for Liquid Simulations

This work presents a method for efficiently simplifying the pressure projection step in a liquid simulation. We first devise a straightforward dimension reduction technique that dramatically reduces the cost of solving the pressure projection. Next, we introduce a novel change of basis that satisfies free‐surface boundary conditions exactly, regardless of the accuracy of the pressure solve. When combined, these ideas greatly reduce the computational complexity of the pressure solve without compromising free surface boundary conditions at the highest level of detail. Our techniques are easy to parallelize, and they effectively eliminate the computational bottleneck for large liquid simulations.

[1]  Jonathan M. Cohen,et al.  Low viscosity flow simulations for animation , 2008, SCA '08.

[2]  Christopher Wojtan,et al.  Liquid surface tracking with error compensation , 2013, ACM Trans. Graph..

[3]  Robert Bridson,et al.  Animating sand as a fluid , 2005, ACM Trans. Graph..

[4]  Eugene Fiume,et al.  Fluid simulation using Laplacian eigenfunctions , 2012, TOGS.

[5]  Peter-Pike J. Sloan,et al.  Enhancements to Model-reduced Fluid Simulation , 2013, MIG.

[6]  Rüdiger Westermann,et al.  Large-Scale Liquid Simulation on Adaptive Hexahedral Grids , 2014, IEEE Transactions on Visualization and Computer Graphics.

[7]  Hyeong-Seok Ko,et al.  Stretching and wiggling liquids , 2009, ACM Trans. Graph..

[8]  Andrew Lewis,et al.  Model reduction for real-time fluids , 2006, SIGGRAPH '06.

[9]  M. Gross,et al.  A multiscale approach to mesh-based surface tension flows , 2010, ACM Trans. Graph..

[10]  Theodore Kim,et al.  Subspace fluid re-simulation , 2013, ACM Trans. Graph..

[11]  R. Fedkiw,et al.  A novel algorithm for incompressible flow using only a coarse grid projection , 2010, ACM Trans. Graph..

[12]  Robert Bridson,et al.  Guide shapes for high resolution naturalistic liquid simulation , 2011, ACM Trans. Graph..

[13]  Adrien Treuille,et al.  Modular bases for fluid dynamics , 2009, ACM Trans. Graph..

[14]  Ignacio Llamas,et al.  Simulation of bubbles in foam with the volume control method , 2007, ACM Trans. Graph..

[15]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[16]  Theodore Kim,et al.  Closest point turbulence for liquid surfaces , 2013, TOGS.

[17]  Ignacio Llamas,et al.  Simulation of bubbles in foam with the volume control method , 2007, SIGGRAPH 2007.

[18]  Matthias Müller,et al.  Real-time Eulerian water simulation using a restricted tall cell grid , 2011, ACM Trans. Graph..

[19]  Eftychios Sifakis,et al.  A parallel multigrid Poisson solver for fluids simulation on large grids , 2010, SCA '10.

[20]  Ming C. Lin,et al.  Fast animation of turbulence using energy transport and procedural synthesis , 2008, SIGGRAPH Asia '08.

[21]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[22]  Doug L. James,et al.  Wavelet turbulence for fluid simulation , 2008, SIGGRAPH 2008.

[23]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, ACM Trans. Graph..

[24]  Michael B. Nielsen,et al.  Guide shapes for high resolution naturalistic liquid simulation , 2011, SIGGRAPH 2011.

[25]  Jun-yong Noh,et al.  A heterogeneous CPU–GPU parallel approach to a multigrid Poisson solver for incompressible fluid simulation , 2013, Comput. Animat. Virtual Worlds.

[26]  Robert Bridson,et al.  Detailed water with coarse grids , 2014, ACM Trans. Graph..

[27]  Adrien Treuille,et al.  Non-polynomial Galerkin projection on deforming meshes , 2013, ACM Trans. Graph..

[28]  Matthias Teschner,et al.  IISPH‐FLIP for incompressible fluids , 2014, Comput. Graph. Forum.

[29]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, SIGGRAPH 2007.

[30]  Ronald Fedkiw,et al.  A novel algorithm for incompressible flow using only a coarse grid projection , 2010, SIGGRAPH 2010.

[31]  Jihun Yu,et al.  Explicit Mesh Surfaces for Particle Based Fluids , 2012, Comput. Graph. Forum.

[32]  Li-Tien Cheng,et al.  A second-order-accurate symmetric discretization of the Poisson equation on irregular domains , 2002 .