Strain-Directed Layer-By-Layer Epitaxy Toward van der Waals Homo- and Heterostructures

Transition-metal dichalcogenide (TMDC) homo- and heterostacks hold tantalizing prospects for being integrated as active components in future van der Waals (vdW) electronics and optoelectronics. How...

[1]  Lain‐Jong Li,et al.  Epitaxial Growth and Determination of Band Alignment of Bi2Te3–WSe2 Vertical van der Waals Heterojunctions , 2020, ACS Materials Letters.

[2]  Zhen Cao,et al.  Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides , 2020, Nature Materials.

[3]  T. Yu,et al.  Excitonic Lasers in Atomically Thin 2D Semiconductors , 2020 .

[4]  Y. Sugawara,et al.  Atomically Asymmetric Inversion Scales up to Mesoscopic Single-Crystal Monolayer Flakes. , 2020, ACS nano.

[5]  R. Sharma,et al.  Spectroscopic correlation of chalcogen defects in atomically thin MoS2(1−x)Se2x alloys , 2020, Journal of Physics: Materials.

[6]  Peng Li,et al.  Growth of 2H stacked WSe2 bilayers on sapphire , 2019, Nanoscale Horizons.

[7]  X. Duan,et al.  Rational Kinetics Control toward Universal Growth of 2D Vertically Stacked Heterostructures , 2019, Advanced materials.

[8]  Chien-Chih Tseng,et al.  Metal‐Guided Selective Growth of 2D Materials: Demonstration of a Bottom‐Up CMOS Inverter , 2019, Advanced materials.

[9]  H. Nan,et al.  Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy , 2019, Nature Communications.

[10]  D. Jariwala,et al.  Emerging photonic architectures in two-dimensional opto-electronics. , 2018, Chemical Society reviews.

[11]  Takashi Taniguchi,et al.  Room-temperature electrical control of exciton flux in a van der Waals heterostructure , 2018, Nature.

[12]  Lain‐Jong Li,et al.  Self‐Aligned and Scalable Growth of Monolayer WSe2–MoS2 Lateral Heterojunctions , 2018 .

[13]  M. Rohlfing,et al.  Strain Control of Exciton-Phonon Coupling in Atomically Thin Semiconductors. , 2018, Nano letters.

[14]  J. Lowengrub,et al.  Toward a Mechanistic Understanding of Vertical Growth of van der Waals Stacked 2D Materials: A Multiscale Model and Experiments. , 2017, ACS nano.

[15]  Tay-Rong Chang,et al.  Evidence of indirect gap in monolayer WSe2 , 2017, Nature Communications.

[16]  A. Javey,et al.  Strain-engineered growth of two-dimensional materials , 2017, Nature Communications.

[17]  L. Cavallo,et al.  Substrate Lattice-Guided Seed Formation Controls the Orientation of 2D Transition-Metal Dichalcogenides. , 2017, ACS nano.

[18]  M. Rohlfing,et al.  Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides , 2017, npj 2D Materials and Applications.

[19]  A. Rahimi‐Iman,et al.  Influence of the substrate material on the optical properties of tungsten diselenide monolayers , 2016, 1610.00062.

[20]  Zi-kui Liu,et al.  Lateral Versus Vertical Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Thermodynamic Insight into MoS2. , 2016, Nano letters.

[21]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[22]  M. Rohlfing,et al.  Reversible uniaxial strain tuning in atomically thin WSe2 , 2016 .

[23]  P. Ajayan,et al.  Spectroscopic Signatures of AA' and AB Stacking of Chemical Vapor Deposited Bilayer MoS2. , 2015, ACS nano.

[24]  Jr-hau He,et al.  Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface , 2015, Science.

[25]  L. Lauhon,et al.  Investigation of band-offsets at monolayer-multilayer MoS₂ junctions by scanning photocurrent microscopy. , 2015, Nano letters.

[26]  N. Dai,et al.  Self-induced uniaxial strain in MoS2 monolayers with local van der Waals-stacked interlayer interactions. , 2015, ACS nano.

[27]  Yun Hee Jang,et al.  Layer-controlled CVD growth of large-area two-dimensional MoS2 films. , 2015, Nanoscale.

[28]  Sefaattin Tongay,et al.  Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. , 2014, Nano letters.

[29]  C. Battaglia,et al.  Strain-induced indirect to direct bandgap transition in multilayer WSe2. , 2014, Nano letters.

[30]  C. S. Chang,et al.  Determination of band alignment in the single-layer MoS2/WSe2 heterojunction , 2014, Nature Communications.

[31]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[32]  Lain-Jong Li,et al.  Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. , 2014, ACS nano.

[33]  C. Franchini,et al.  Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS 2 , MoSe 2 , WS 2 , and WSe 2 , 2014 .

[34]  Lain‐Jong Li,et al.  Large-area synthesis of highly crystalline WSe(2) monolayers and device applications. , 2014, ACS nano.

[35]  J. Grossman,et al.  Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons , 2013, Scientific Reports.

[36]  Lain-Jong Li,et al.  Large-Area Aiming Synthesis of WSe2 Monolayers , 2013, 1304.7365.

[37]  Aaron M. Jones,et al.  Optical generation of excitonic valley coherence in monolayer WSe2. , 2013, Nature nanotechnology.

[38]  Soon Cheol Hong,et al.  High‐Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared , 2012, Advanced materials.

[39]  Sefaattin Tongay,et al.  Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. , 2012, Nano letters.

[40]  S. Min,et al.  MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. , 2012, Nano letters.

[41]  V. Shenoy,et al.  Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. , 2012, ACS nano.

[42]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[43]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[44]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[45]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[46]  K. Natori Ballistic metal-oxide-semiconductor field effect transistor , 1994 .

[47]  K. O'Donnell,et al.  Temperature dependence of semiconductor band gaps , 1991 .