Nonaxial shapes of even–even lantanide and actinide nuclei in excited collective states

[1]  M. S. Nadirbekov,et al.  Triaxiality in excited states of lanthanide and actinide even–even nuclei , 2014 .

[2]  M. S. Nadirbekov,et al.  Excited collective states of heavy even-even nuclei , 2013 .

[3]  A. Faessler,et al.  New features of the triaxial nuclei described with a coherent state model , 2011, 1108.5587.

[4]  A. Raduta,et al.  Toward a new description of triaxial nuclei , 2011 .

[5]  D. Bonatsos,et al.  Bohr Hamiltonian with Davidson potential for triaxial nuclei , 2010, 1012.3519.

[6]  D. Lenis,et al.  Nuclear collective motion with a coherent coupling interaction between quadrupole and octupole modes , 2006, nucl-th/0603059.

[7]  L. Fortunato Solutions of the Bohr Hamiltonian, a compendium , 2004, nucl-th/0411087.

[8]  F. Iachello Analytic description of critical point nuclei in a spherical-axially deformed shape phase transition. , 2001, Physical review letters.

[9]  Iachello Dynamic symmetries at the critical point , 2000, Physical review letters.

[10]  Whelan,et al.  Chaotic properties of the interacting-boson model: A discovery of a new regular region. , 1991, Physical review letters.

[11]  J. Elliott,et al.  A soluble γ-unstable hamiltonian , 1986 .

[12]  A. Molchanov From the Current Literature: Lasers in the Vacuum Ultraviolet and in the X-Ray Regions of the Spectrum , 1972 .

[13]  L. Grodzins The uniform behaviour of electric quadrupole transition probabilities from first 2+ states in even-even nuclei☆ , 1962 .

[14]  A. Davydov,et al.  Rotation-vibration interaction in non-axial even nuclei , 1960 .

[15]  L. Wilets,et al.  SURFACE OSCILLATIONS IN EVEN-EVEN NUCLEI , 1956 .