Robust MR assessment of cerebral blood volume and mean vessel size using SPION-enhanced ultrashort echo acquisition

Intravascular superparamagnetic iron oxide nanoparticles (SPION)-enhanced MR transverse relaxation rates (∆R2(⁎) and ∆R2) are widely used to investigate in vivo vascular parameters, such as the cerebral blood volume (CBV), microvascular volume (MVV), and mean vessel size index (mVSI, ∆R2(⁎)/∆R2). Although highly efficient, regional comparison of vascular parameters acquired using gradient-echo based ∆R2(⁎) is hampered by its high sensitivity to magnetic field perturbations arising from air-tissue interfaces and large vessels. To minimize such demerits, we took advantage of the dual contrast property of SPION and both theoretically and experimentally verified the direct benefit of replacing gradient-echo based ∆R2(⁎) measurement with ultra-short echo time (UTE)-based ∆R1 contrast to generate the robust CBV and mVSI maps. The UTE acquisition minimized the local measurement errors from susceptibility perturbations and enabled dose-independent CBV measurement using the vessel/tissue ∆R1 ratio, while independent spin-echo acquisition enabled simultaneous ∆R2 measurement and mVSI calculation of the cortex, cerebellum, and olfactory bulb, which are animal brain regions typified by significant susceptibility-associated measurement errors.

[1]  M. Décorps,et al.  Vessel size imaging , 2001, Magnetic resonance in medicine.

[2]  Gary Glover,et al.  Ferumoxytol enhanced resting state fMRI and relative cerebral blood volume mapping in normal human brain , 2013, NeuroImage.

[3]  B. Rosen,et al.  Echo-planar MR cerebral blood volume mapping of gliomas. Clinical utility. , 1996, Acta radiologica.

[4]  J. Schenck The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. , 1996, Medical physics.

[5]  Mark Bydder,et al.  Magnetic Resonance: An Introduction to Ultrashort TE (UTE) Imaging , 2003, Journal of computer assisted tomography.

[6]  M. Décorps,et al.  Regional response of cerebral blood volume to graded hypoxic hypoxia in rat brain. , 2002, British journal of anaesthesia.

[7]  M E Phelps,et al.  Validation of tomographic measurement of cerebral blood volume with C-11-labeled carboxyhemoglobin. , 1979, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[8]  K. Katada,et al.  Cerebral hemodynamics in patients with chronic obstructive carotid disease by rCBF, rCBV, and rCBV/rCBF ratio using SPECT. , 1990, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[9]  G. Dai,et al.  In vivo quantification of transvascular water exchange during the acute phase of permanent stroke , 2008, Magnetic resonance in medicine.

[10]  J. Lear,et al.  Mapping regional cerebral vascular transit time by simultaneous determination of local cerebral blood flow and local cerebral blood volume , 1990, Metabolic brain disease.

[11]  Carlo Pierpaoli,et al.  Simultaneous Measurement of ΔR2 and ΔR2* in Cat Brain during Hypoxia and Hypercapnia , 1997, NeuroImage.

[12]  David Norman,et al.  Hypercarbia‐induced changes in cerebral blood volume in the cat: A 1H MRI and intravascular contrast agent study , 1992, Magnetic resonance in medicine.

[13]  R. Wise,et al.  EVALUATION OF CEREBRAL PERFUSION RESERVE IN PATIENTS WITH CAROTID-ARTERY OCCLUSION , 1984, The Lancet.

[14]  B R Rosen,et al.  NMR imaging of changes in vascular morphology due to tumor angiogenesis , 1998, Magnetic resonance in medicine.

[15]  K Kuppusamy,et al.  In vivo regional cerebral blood volume: quantitative assessment with 3D T1-weighted pre- and postcontrast MR imaging. , 1996, Radiology.

[16]  P. Weinstein,et al.  Normal perfusion pressure breakthrough theory. , 1978, Clinical neurosurgery.

[17]  Wei Li,et al.  Acute cerebral ischemia: evaluation with dynamic contrast-enhanced MR imaging and MR angiography. , 1992, Radiology.

[18]  M E Raichle,et al.  Positron emission tomography and its application to the study of cerebrovascular disease in man. , 1985, Stroke.

[19]  Wei Li,et al.  First‐pass contrast‐enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall superparamagnetic iron oxide (USPIO)‐based blood pool agent , 2005, Journal of magnetic resonance imaging : JMRI.

[20]  J. Pauly,et al.  Boron‐11 imaging with a three‐dimensional reconstruction method , 1992, Journal of magnetic resonance imaging : JMRI.

[21]  Bumwoo Park,et al.  Dual MRI T1 and T2(*) contrast with size-controlled iron oxide nanoparticles. , 2014, Nanomedicine : nanotechnology, biology, and medicine.

[22]  B R Rosen,et al.  Mr contrast due to intravascular magnetic susceptibility perturbations , 1995, Magnetic resonance in medicine.

[23]  R. Grubb,et al.  Regional cerebral blood volume in humans. X-ray fluorescence studies. , 1973, Archives of neurology.

[24]  R. Weissleder,et al.  Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. , 1990, Radiology.

[25]  A. Haase,et al.  Quantification of regional blood volumes by rapid T1 mapping , 1993, Magnetic resonance in medicine.

[26]  E. Haacke,et al.  Theory of NMR signal behavior in magnetically inhomogeneous tissues: The static dephasing regime , 1994, Magnetic resonance in medicine.

[27]  T. Trouard,et al.  Effects of the iron oxide nanoparticle Molday ION Rhodamine B on the viability and regenerative function of neural stem cells: relevance to clinical translation , 2016, International journal of nanomedicine.

[28]  R Deichmann,et al.  Quantitative magnetic resonance imaging of capillary water permeability and regional blood volume with an intravascular MR contrast agent , 1997, Magnetic resonance in medicine.

[29]  N B EVERETT,et al.  Distribution of Blood (Fe59) and Plasma (I131) Volumes of Rats Determined by Liquid Nitrogen Freezing , 1956, Circulation research.

[30]  Graeme M. Bydder,et al.  MR imaging with ultrashort TE (UTE) pulse sequences: Basic principles , 2005 .

[31]  J W Belliveau,et al.  Measurement of Cerebrovascular Changes in Cats After Transient Ischemia Using Dynamic Magnetic Resonance Imaging , 1993, Stroke.

[32]  Seong-Gi Kim,et al.  Cerebral blood volume MRI with intravascular superparamagnetic iron oxide nanoparticles , 2013, NMR in biomedicine.

[33]  R. Leggett,et al.  Suggested reference values for regional blood volumes in humans. , 1991, Health physics.

[34]  J. Kucharczyk,et al.  Contrast‐enhanced perfusion‐sensitive MR imaging in the diagnosis of cerebrovascular disorders , 1993, Journal of magnetic resonance imaging : JMRI.

[35]  Roland Bammer,et al.  High‐resolution cerebral blood volume imaging in humans using the blood pool contrast agent ferumoxytol , 2013, Magnetic resonance in medicine.

[36]  David L. Thomas,et al.  Measuring Cerebral Blood Flow Using Magnetic Resonance Imaging Techniques , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[37]  D. Ingvar,et al.  Regional cerebral blood volume during acute transient rises of the intracranial pressure (plateau waves). , 1969, Journal of neurosurgery.

[38]  B. Douglas Ward,et al.  A novel technique for modeling susceptibility-based contrast mechanisms for arbitrary microvascular geometries: The finite perturber method , 2008, NeuroImage.

[39]  John G. Sled,et al.  Measurement of cerebral blood volume in mouse brain regions using micro-computed tomography , 2009, NeuroImage.

[40]  Glyn Johnson,et al.  Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. , 2002, Radiology.

[41]  Y. Ni,et al.  Comparison of iron oxide particles (AMI 227) with a gadolinium complex (Gd‐DOTA) in dynamic susceptibility contrast MR imagings (FLASH and EPI) for both phantom and rat brain at 1.5 tesla , 1999, Journal of magnetic resonance imaging : JMRI.

[42]  E F Halpern,et al.  Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. , 1994, Radiology.

[43]  Haiying Tang,et al.  Regional cerebral blood volume reduction in transgenic mutant APP (V717F, K670N/M671L) mice , 2004, Neuroscience Letters.

[44]  Y. R. Kim,et al.  Cerebral Blood Volume Affects Blood–Brain Barrier Integrity in an Acute Transient Stroke Model , 2013, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[45]  K. B. Larson,et al.  In Vivo Determination of Cerebral Blood Volume with Radioactive Oxygen‐15 in the Monkey , 1975, Circulation research.

[46]  Emmanuel L Barbier,et al.  Characterization of Tumor Angiogenesis in Rat Brain Using Iron-Based Vessel Size Index MRI in Combination with Gadolinium-Based Dynamic Contrast-Enhanced MRI , 2009, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[47]  J. E. Cremer,et al.  Regional Brain Blood Flow, Blood Volume, and Haematocrit Values in the Adult Rat , 1983, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[48]  Erkki Ruoslahti,et al.  Optimization of iron oxide nanoparticle detection using ultrashort echo time pulse sequences: Comparison of T1, T2*, and synergistic T1 − T2* contrast mechanisms , 2011, Magnetic resonance in medicine.

[49]  Haiying Tang,et al.  Published online in Wiley InterScience (www.interscience.wiley.com). DOI:10.1002/nbm.923 Review Article Applications of ultrasmall superparamagnetic iron oxide contrast agents in the MR study of animal models , 2022 .