Heterogeneous Nucleation of Protein Crystals on Fluorinated Layered Silicate

Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface.

[1]  Jianhua He,et al.  Epitaxial Growth of Trichosanthin Protein Crystals on Mica Surface , 2010 .

[2]  A. Dalton,et al.  Carbon-nanotube-based materials for protein crystallization. , 2009, ACS applied materials & interfaces.

[3]  N. Hakulinen,et al.  The Contribution of Polystyrene Nanospheres towards the Crystallization of Proteins , 2009, PloS one.

[4]  G. Falini,et al.  Crystallization of proteins on functionalized surfaces. , 2008, Acta crystallographica. Section D, Biological crystallography.

[5]  K. Sakaguchi,et al.  Selective adsorption of bacterial cells onto zeolites. , 2008, Colloids and surfaces. B, Biointerfaces.

[6]  N. Kunishima,et al.  Nucleant-mediated protein crystallization with the application of microporous synthetic zeolites. , 2008, Acta crystallographica. Section D, Biological crystallography.

[7]  O. Nureki,et al.  Use of layer silicate for protein crystallization: effects of Micromica and chlorite powders in hanging drops. , 2008, Analytical biochemistry.

[8]  G. Gatti,et al.  On the acidity of saponite materials: a combined HRTEM, FTIR, and solid-state NMR study. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[9]  C. Ching,et al.  Influence of the roughness, topography, and physicochemical properties of chemically modified surfaces on the heterogeneous nucleation of protein crystals. , 2007, The journal of physical chemistry. B.

[10]  J. Newman,et al.  Improved Success of Sparse Matrix Protein Crystallization Screening with Heterogeneous Nucleating Agents , 2007, PloS one.

[11]  J. Abrahams,et al.  Heterogeneous nucleation of three-dimensional protein nanocrystals. , 2007, Acta crystallographica. Section D, Biological crystallography.

[12]  Enrico Boccaleri,et al.  Synthetic, layered nanoparticles for polymeric nanocomposites (PNCs) , 2007 .

[13]  Y. Nemirovsky,et al.  A model for enhanced nucleation of protein crystals on a fractal porous substrate. , 2006, Biophysical journal.

[14]  Enrico Drioli,et al.  Influence of the structural properties of poly(vinylidene fluoride) membranes on the heterogeneous nucleation rate of protein crystals. , 2006, The journal of physical chemistry. B.

[15]  N. Chayen,et al.  Experiment and theory for heterogeneous nucleation of protein crystals in a porous medium. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[16]  L. Delmotte,et al.  Synthesis and characterization of montmorillonite-type phyllosilicates in a fluoride medium , 2005, Clay Minerals.

[17]  J. Geus,et al.  Synthesis and characterization of saponite clays , 2005 .

[18]  M. Jaber,et al.  Influence du milieu de synthèse sur la cristallisation de saponite : proposition de mécanisme réactionnel en milieux acide et basique , 2005 .

[19]  J. Li,et al.  Effects of the silanized mica surface on protein crystallization. , 2005, Acta crystallographica. Section D, Biological crystallography.

[20]  Neer Asherie,et al.  Protein crystallization and phase diagrams. , 2004, Methods.

[21]  Naomi E Chayen,et al.  Turning protein crystallisation from an art into a science. , 2004, Current opinion in structural biology.

[22]  P. Déjardin,et al.  Adsorption of alpha-chymotrypsin onto mica in laminar flow conditions. Adsorption kinetic constant as a function of tris buffer concentration at pH 8.6. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[23]  S. Yoda,et al.  Protein crystallization by using porous glass substrate. , 2004, Journal of synchrotron radiation.

[24]  A. D'arcy,et al.  Using natural seeding material to generate nucleation in protein crystallization experiments. , 2003, Acta crystallographica. Section D, Biological crystallography.

[25]  R. Tilton,et al.  Coverage-Dependent Orientation of Lysozyme Adsorbed on Silica , 2003 .

[26]  G. Falini,et al.  Protein crystallisation on chemically modified mica surfaces. , 2002, Acta crystallographica. Section D, Biological crystallography.

[27]  S. Yoda,et al.  Control of heterogeneous nucleation of lysozyme crystals by using Poly-L-Lysine modified substrate , 2002 .

[28]  M. Santore,et al.  Adsorption and reorientation kinetics of lysozyme on hydrophobic surfaces , 2002 .

[29]  S. Yoda,et al.  Epitaxial Nucleation of Protein Crystal on Poly-L-Lysine Modified Surface , 2001 .

[30]  Tomitake Tsukihara,et al.  Surface-potential controlled Si-microarray devices for heterogeneous protein crystallization screening , 2001 .

[31]  N E Chayen,et al.  Porous silicon: an effective nucleation-inducing material for protein crystallization. , 2001, Journal of molecular biology.

[32]  G. Falini,et al.  Protein crystallization on polymeric film surfaces , 2001 .

[33]  R. W. Rousseau,et al.  Mineral substrates as heterogeneous nucleants in the crystallization of proteins , 1999 .

[34]  Tomitake Tsukihara,et al.  Spatiotemporal protein crystal growth studies using microfluidic silicon devices , 1999 .

[35]  R. W. Rousseau,et al.  The effect of mineral substrates on the crystallization of lysozyme , 1998 .

[36]  F. Franceschi,et al.  Crystallization of Biological Macromolecules , 1997 .

[37]  J. M. Burlitch,et al.  Sol‐Gel Synthesis of Fluoride‐Substituted Talc. , 1996 .

[38]  A. Edwards,et al.  Epitaxial growth of protein crystals from two-dimensional crystals on lipid layers. , 1995, Current opinion in structural biology.

[39]  R. Kornberg,et al.  The mechanism of protein crystal growth from lipid layers. , 1995, Journal of molecular biology.

[40]  J. Geus,et al.  Non-hydrothermal synthesis, characterisation and catalytic properties of saponite clays , 1995 .

[41]  N E Chayen,et al.  Control of nucleation of protein crystals , 1994, Protein science : a publication of the Protein Society.

[42]  R. Kornberg,et al.  Epitaxial growth of protein crystals on lipid layers , 1994, Nature Structural Biology.

[43]  J. T. Kloprogge,et al.  Development of Ammonium-Saponites from Gels with Variable Ammonium Concentration and Water Content at Low Temperatures , 1993 .

[44]  V. Cody,et al.  Protein crystal growth in the presence of poly(vinylidene difluoride) membrane , 1991 .

[45]  S. Iwata,et al.  Crystallization of allosteric L-lactate dehydrogenase from Thermus caldophilus and preliminary crystallographic data. , 1991, Journal of biochemistry.

[46]  A. Ōya,et al.  Syntheses and thermal degradation behaviours of saponite-α-naphthylamine complexes: effects of substitution of OH in saponite by fluorine , 1988 .

[47]  P. Shlichta,et al.  Heterogeneous and Epitaxial Nucleation of Protein Crystals on Mineral Surfaces , 1988, Science.

[48]  A. Ōya,et al.  Thermal degradation behaviour of fluorosaponite-α-naphtylamine complex under nitrogen , 1986 .

[49]  J. M. Adams,et al.  Determination of the Cation-Exchange Capacity (Layer Charge) of Small Quantities of Clay Minerals by Nephelometry , 1979 .

[50]  C. Schollenberger,et al.  DETERMINATION OF EXCHANGE CAPACITY AND EXCHANGEABLE BASES IN SOIL—AMMONIUM ACETATE METHOD , 1945 .