Uniaxial Electromechanical Behavior of a Soft PZT: Experiments and Modeling

The aim of this work is to collect a database from uniaxial experiments and model the material behavior. A soft PZT is tested in compression; the influence of stress rate seems to be negligible and the material accommodates to cyclic mechanical loadings. These responses are simulated by means of a phenomenological model taking into account the coupling between remnant strain and polarization thanks to a mechanically induced depolarization function.

[1]  K. Härdtl,et al.  Ferroelastic Properties of Lead Zirconate Titanate Ceramics , 2005 .

[2]  Johannes Rödel,et al.  Modelling linear and nonlinear behavior of polycrystalline ferroelectric ceramics , 2003 .

[3]  Robert M. McMeeking,et al.  Combined isotropic and kinematic hardening in phenomenological switching models for ferroelectric ceramics , 2003 .

[4]  Chad M. Landis,et al.  A phenomenological multi-axial constitutive law for switching in polycrystalline ferroelectric ceramics , 2002 .

[5]  Patrice Le Moal,et al.  A piezo-mechanical characterization of PZT thick films screen-printed on alumina substrate , 2002 .

[6]  Chad M. Landis,et al.  Fully coupled, multi-axial, symmetric constitutive laws for polycrystalline ferroelectric ceramics , 2002 .

[7]  J. Calderon‐Moreno,et al.  Stress induced domain switching of PZT in compression tests , 2001 .

[8]  Norman A. Fleck,et al.  Multi-axial electrical switching of a ferroelectric: theory versus experiment , 2001 .

[9]  Q.M. Zhang,et al.  Electromechanical properties of lead zirconate titanate piezoceramics under the influence of mechanical stresses , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[10]  Norman A. Fleck,et al.  A constitutive model for ferroelectric polycrystals , 1999 .

[11]  Robert M. McMeeking,et al.  A phenomenological constitutive law for the behaviour of ferroelectric ceramics , 1999 .

[12]  Marc Kamlah,et al.  Phenomenological modeling of the non-linear electro-mechanical coupling in ferroelectrics , 1999 .

[13]  K. H. Hardtl,et al.  Time dependence of mechanical depolarization in ferroelectric ceramics , 1998, ISAF 1998. Proceedings of the Eleventh IEEE International Symposium on Applications of Ferroelectrics (Cat. No.98CH36245).

[14]  Norman A. Fleck,et al.  The simulation of switching in polycrystalline ferroelectric ceramics , 1998 .

[15]  L. Pardo,et al.  Changes in the piezoelectric parameters of PZT ceramics during the poling process , 1998 .

[16]  Yongzhong Huo,et al.  Modeling of domain switching in polycrystalline ferroelectric ceramics , 1997 .

[17]  Christopher S. Lynch,et al.  The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT , 1996 .

[18]  Christopher S. Lynch,et al.  Ferroelectric/ferroelastic interactions and a polarization switching model , 1995 .

[19]  Anthony G. Evans,et al.  Nonlinear Deformation of Ferroelectric Ceramics , 1993 .

[20]  P. Delobelle Sur les lois de comportement viscoplastique à variables internes - Exemples de deux alliages industriels : inoxydable austénitique 17-12 SPH et superalliage INCO718 , 1988 .

[21]  J. Chaboche Time-independent constitutive theories for cyclic plasticity , 1986 .

[22]  F. Micheron,et al.  Ferroelectric Materials and Their Applications , 1979 .

[23]  Quoc Son Nguyen,et al.  Sur les matériaux standard généralisés , 1975 .