Influence of compressive uniaxial strain on the piezoelectric response of wurtzite crystals

We present a computational study of the crystal structure and electric polarization of strained wurtzite III–V nitrides and II–VI oxides, performed in the context of density functional theory and the Berry phase method. The main goal is to investigate the degree to which the lattice parameters, piezoelectric polarization, and piezoelectric constant can be affected by compressive uniaxial strain along the hexagonal c-axis. We show that imposing such strain enhances the piezoelectric response, with both polarization and piezoelectric coefficient increasing from their equilibrium values. The internal parameter of the wurtzite structure also increases with uniaxial strain and eventually becomes equal to 0.5, resulting in a phase transition into the layered hexagonal structure. Furthermore, we discuss the physical origin behind the enhanced piezoelectricity, showing that the enhancement is caused by a strong increase in the response of the internal parameter to strain.

[1]  M. Kraft,et al.  A Review on Coupled Bulk Acoustic Wave MEMS Resonators , 2022, Sensors.

[2]  Marwa M. Ahmed,et al.  Piezoelectric Transducer as an Energy Harvester: A Review , 2022, Yanbu Journal of Engineering and Science.

[3]  Cheng Wei,et al.  A Deduction of the Hellmann-Feynman Theorem , 2020, International Journal of Theoretical Physics.

[4]  H. Fan,et al.  A Deduction of the Hellmann-Feynman Theorem , 2020, International Journal of Theoretical Physics.

[5]  K. Schwarz,et al.  WIEN2k: An APW+lo program for calculating the properties of solids. , 2020, The Journal of chemical physics.

[6]  S. Kang,et al.  Review—Recent Progress in Flexible and Stretchable Piezoresistive Sensors and Their Applications , 2020, Journal of The Electrochemical Society.

[7]  Geoff L. Brennecka,et al.  Review of high-throughput approaches to search for piezoelectric nitrides , 2019 .

[8]  Ahmad W. Huran,et al.  Semilocal exchange-correlation potentials for solid-state calculations: Current status and future directions , 2019, Journal of Applied Physics.

[9]  Huicong Liu,et al.  A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications , 2018, Applied Physics Reviews.

[10]  M. Bilal,et al.  IR-elastic package , 2017 .

[11]  Yanning Zhang,et al.  First-principle studies on the influence of anisotropic pressure on the physical properties of aluminum nitride , 2017 .

[12]  N. Gogneau,et al.  From single III-nitride nanowires to piezoelectric generators: New route for powering nomad electronics , 2016 .

[13]  Mark Asta,et al.  A database to enable discovery and design of piezoelectric materials , 2015, Scientific Data.

[14]  R. O. Jones,et al.  Density functional theory: Its origins, rise to prominence, and future , 2015 .

[15]  G. Bester,et al.  Nonlinear piezoelectricity in wurtzite semiconductors , 2013 .

[16]  Eoin P. O'Reilly,et al.  Theory of local electric polarization and its relation to internal strain: Impact on polarization potential and electronic properties of group-III nitrides , 2013, 1309.3309.

[17]  S. Balevičius,et al.  Uniaxial stress influence on electrical conductivity of thin epitaxial lanthanum-strontium manganite films , 2013 .

[18]  V. Kolomoets,et al.  Application of high uniaxial strain methods for semiconductor parameter determination , 2013 .

[19]  Samuel Pichardo,et al.  BerryPI: A software for studying polarization of crystalline solids with WIEN2k density functional all-electron package , 2013, Comput. Phys. Commun..

[20]  E. O’Reilly,et al.  Hybrid functional study of the elastic and structural properties of wurtzite and zinc-blende group-III nitrides , 2012 .

[21]  N. Spaldin,et al.  A beginner's guide to the modern theory of polarization , 2012, 1202.1831.

[22]  R. Lakes,et al.  Poisson's ratio and modern materials , 2011, Nature Materials.

[23]  E. O’Reilly,et al.  Built-in field control in alloyed c-plane III-N quantum dots and wells , 2011 .

[24]  S. Nakamura,et al.  Strain-induced polarization in wurtzite III-nitride semipolar layers , 2006 .

[25]  A. Becke,et al.  A simple effective potential for exchange. , 2006, The Journal of chemical physics.

[26]  Kazuhiro Shimada First-Principles Determination of Piezoelectric Stress and Strain Constants of Wurtzite III–V Nitrides , 2006 .

[27]  Kazuaki Kobayashi Electronic and Lattice Properties of Layered Hexagonal Compounds Under Anisotropic Compression: A First-Principles Study , 2005 .

[28]  U. Waghmare,et al.  First-principles study of wurtzite-structure MnO , 2003, cond-mat/0311529.

[29]  R. Dovesi,et al.  Full piezoelectric tensors of wurtzite and zinc blende ZnO and ZnS by first-principles calculations , 2003 .

[30]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[31]  L. Bellaiche,et al.  Strained hexagonal ScN: a material with unusual structural and optical properties. , 2003, Physical review letters.

[32]  L. Bellaiche,et al.  Properties of hexagonal ScN versus wurtzite GaN and InN , 2002 .

[33]  Jacek A. Majewski,et al.  Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures , 2002 .

[34]  R. Dovesi,et al.  Polarization properties of ZnO and BeO: An ab initio study through the Berry phase and Wannier functions approaches , 2001 .

[35]  Elisabeth Sjöstedt,et al.  Efficient linearization of the augmented plane-wave method , 2001 .

[36]  F. Bernardini,et al.  Nonlinear macroscopic polarization in III-V nitride alloys , 2001, cond-mat/0103050.

[37]  G. Yang,et al.  Effects of uniaxial stress on the piezoelectric, dielectric, and mechanical properties of lead zirconate titanate piezoceramics , 2001 .

[38]  D. Vanderbilt,et al.  Accurate calculation of polarization-related quantities in semiconductors , 2000, cond-mat/0011243.

[39]  A. Adams,et al.  Study of semiconductor lasers under simultaneous uniaxial stress and hydrostatic pressure , 2000 .

[40]  E. Gullikson,et al.  Electronic states in valence and conduction bands of group-III nitrides: Experiment and theory , 2000 .

[41]  D. Vanderbilt,et al.  Spontaneous polarization and piezoelectric constants of III-V nitrides , 1997, cond-mat/9705105.

[42]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[43]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[44]  M. Cardona Semiconductors under Uniaxial Strain , 1996 .

[45]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[46]  Steiner,et al.  Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures. , 1996, Physical review. B, Condensed matter.

[47]  Posternak,et al.  Ab initio study of piezoelectricity and spontaneous polarization in ZnO. , 1994, Physical review. B, Condensed matter.

[48]  Raffaele Resta,et al.  MACROSCOPIC POLARIZATION IN CRYSTALLINE DIELECTRICS : THE GEOMETRIC PHASE APPROACH , 1994 .

[49]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[50]  A. Catellani,et al.  Spontaneous polarization from first-principles: Pyroelectric BeO , 1990 .

[51]  Posternak,et al.  Ab initio study of the spontaneous polarization of pyroelectric BeO. , 1990, Physical review letters.

[52]  Robert M. Hazen,et al.  High‐pressure and high‐temperature crystal chemistry of beryllium oxide , 1986 .

[53]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[54]  P. Vogl,et al.  Dependence on volume of the phonon frequencies and the ir effective charges of several III-V semiconductors , 1983 .

[55]  Joseph Callaway,et al.  Inhomogeneous Electron Gas , 1973 .

[56]  Marc Ilegems,et al.  Infrared Lattice Vibrations and Free-Electron Dispersion in GaN , 1973 .

[57]  R. H. Lyddane,et al.  On the Polar Vibrations of Alkali Halides , 1941 .

[58]  R. Feynman Forces in Molecules , 1939 .

[59]  John C. Slater,et al.  Wave Functions in a Periodic Potential , 1937 .

[60]  R. Pandey,et al.  Review on ZnO-based piezotronics and piezoelectric nanogenerators: aspects of piezopotential and screening effect , 2021, Journal of Physics: Materials.

[61]  J. Yvonnet Piezoelectricity , 2019, Computational Homogenization of Heterogeneous Materials with Finite Elements.

[62]  David Vanderbilt,et al.  Theory of Polarization: A Modern Approach , 2007 .

[63]  R. Bader,et al.  Forces in molecules. , 2007, Faraday discussions.