A Novel Subspace Approach for Bearing-Only Target Localization

A new subspace method is proposed to solve the bearing-only target localization (BOTL) problem. Instead of linearizing the nonlinear bearing equations to form least-squares optimization, we construct a scalar product matrix by making full use of all bearing and intersensor bearing geometric information. After exploiting the dimension and eigenstructure of the scalar product matrix, we devise a subspace algorithm for BOTL with its weights computed from a prior location estimate. Simulation results show that the proposed algorithm achieves a mean square error performance close to the Cramér–Rao lower bound, even at high noise levels. Field experiments demonstrate the superiority of the proposed algorithm.

[1]  Dongliang Peng,et al.  A novel bearing-assisted TDOA-GROA approach for passive source localization , 2018, Int. J. Intell. Comput. Cybern..

[2]  Hing-Cheung So,et al.  A multidimensional scaling framework for mobile location using time-of-arrival measurements , 2005, IEEE Transactions on Signal Processing.

[3]  Moeness G. Amin,et al.  Localization and Tracking of Passive RFID Tags Based on Direction Estimation , 2007 .

[4]  G. Gu,et al.  A Novel Power-Bearing Approach and Asymptotically Optimum Estimator for Target Motion Analysis , 2011, IEEE Transactions on Signal Processing.

[5]  K. C. Ho,et al.  An Asymptotically Efficient Estimator in Closed-Form for 3-D AOA Localization Using a Sensor Network , 2015, IEEE Transactions on Wireless Communications.

[6]  Feng Xia,et al.  Efficiently and Completely Identifying Missing Key Tags for Anonymous RFID Systems , 2018, IEEE Internet of Things Journal.

[7]  Xiao-Ping Zhang,et al.  A Novel Location-Penalized Maximum Likelihood Estimator for Bearing-Only Target Localization , 2012, IEEE Transactions on Signal Processing.

[8]  P.N. Pathirana,et al.  Bearing-Only Localization using Geometrically Constrained Optimization , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[9]  Kutluyil Dogançay,et al.  Bearings-only target localization using total least squares , 2005, Signal Process..

[10]  Tien Pham,et al.  Localization with sparse acoustic sensor network using UAVs as information-seeking data mules , 2013, TOSN.

[11]  Feng Xia,et al.  On Achieving Asynchronous Energy-Efficient Neighbor Discovery for Mobile Sensor Networks , 2018, IEEE Transactions on Emerging Topics in Computing.

[12]  Lance M. Kaplan,et al.  On exploiting propagation delays for passive target localization using bearings-only measurements , 2005, J. Frankl. Inst..

[13]  Kutluyıl Doğançay,et al.  Bias compensation for the bearings-only pseudolinear target track estimator , 2006, IEEE Transactions on Signal Processing.

[14]  Dongliang Peng,et al.  Source Localization in Acoustic Sensor Networks via Constrained Least-Squares Optimization Using AOA and GROA Measurements , 2018, Sensors.

[15]  Kutluyil Dogançay,et al.  3D Pseudolinear Target Motion Analysis From Angle Measurements , 2015, IEEE Transactions on Signal Processing.

[16]  Kutluyil Dogançay Passive emitter localization using weighted instrumental variables , 2004, Signal Process..

[17]  K. C. Ho,et al.  An asymptotically unbiased estimator for bearings-only and Doppler-bearing target motion analysis , 2006, IEEE Transactions on Signal Processing.

[18]  R. G. Stansfield,et al.  Statistical theory of d.f. fixing , 1947 .

[19]  Xiao-Ping Zhang,et al.  Efficient Closed-Form Algorithms for AOA Based Self-Localization of Sensor Nodes Using Auxiliary Variables , 2014, IEEE Transactions on Signal Processing.

[20]  A. Weiss,et al.  Performance analysis of bearing-only target location algorithms , 1992 .

[21]  K. Gong,et al.  Position and Velocity Estimation Via Bearing Observations , 1978, IEEE Transactions on Aerospace and Electronic Systems.

[22]  Yun Jun Zhang,et al.  Bearings-Only Target Motion Analysis via Instrumental Variable Estimation , 2010, IEEE Transactions on Signal Processing.

[23]  Donald P. Eickstedt Bearings-only target localization for unmanned underwater vehicles , 2011 .

[24]  Yiu-Tong Chan,et al.  Bearings-only and Doppler-bearing tracking using instrumental variables , 1992 .

[25]  M. Arellano,et al.  Another look at the instrumental variable estimation of error-components models , 1995 .

[26]  Frankie K. W. Chan,et al.  A Generalized Subspace Approach for Mobile Positioning With Time-of-Arrival Measurements , 2007, IEEE Transactions on Signal Processing.

[27]  K. Gong,et al.  Fundamental properties and performance of conventional bearings-only target motion analysis , 1984 .

[28]  Jiguo Yu,et al.  RMTS: A robust clock synchronization scheme for wireless sensor networks , 2019, J. Netw. Comput. Appl..