Tethered bilayer lipid membranes with giga-ohm resistances

The successful reconstitution of a tethered BLM on μ-electrodes ranging from 4000 μm to 8 μm is shown in this article. The increase in membrane resistance with decreasing electrode size and the dependency of the membrane capacitance on the electrode size was studied. Furthermore the functional incorporation of α-hemolysin from Staphylococcus aureus into a tBLM situated on μ-electrodes was achieved.

[1]  D. Pum,et al.  Self-assembled alpha-hemolysin pores in an S-layer-supported lipid bilayer. , 1998, Biochimica et biophysica acta.

[2]  U. Sleytr,et al.  Single channel recordings of α-hemolysin reconstituted in S-layer-supported lipid bilayers , 2002 .

[3]  Ingo Köper,et al.  Tethered lipid Bilayers on ultraflat gold surfaces , 2003 .

[4]  Xiaofeng Lu,et al.  Simultaneous stochastic sensing of divalent metal ions , 2000, Nature Biotechnology.

[5]  P D Osman,et al.  Tethered-bilayer lipid membranes as a support for membrane-active peptides. , 2001, Biochemical Society transactions.

[6]  Martin Andersson,et al.  Detection of single ion channel activity on a chip using tethered bilayer membranes. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[7]  W. Knoll,et al.  Functional tethered bilayer membranes as a biosensor platform , 2005, IEEE Sensors, 2005..

[8]  Ingo Köper,et al.  Incorporation of alpha-hemolysin in different tethered bilayer lipid membrane architectures. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[9]  J. Betton,et al.  Unfolding of proteins and long transient conformations detected by single nanopore recording. , 2007, Physical review letters.

[10]  J. Gouaux,et al.  Spontaneous oligomerization of a staphylococcal alpha-hemolysin conformationally constrained by removal of residues that form the transmembrane beta-barrel. , 1997, Protein engineering.

[11]  Ingo Köper,et al.  Functional Ion Channels in Tethered Bilayer Membranes—Implications for Biosensors , 2007, Chembiochem : a European journal of chemical biology.

[12]  H. Bayley,et al.  Stochastic sensors inspired by biology , 2001, Nature.

[13]  Wolfgang Knoll,et al.  Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces. , 2003, Angewandte Chemie.

[14]  K. Rubinson,et al.  Single-molecule mass spectrometry in solution using a solitary nanopore , 2007, Proceedings of the National Academy of Sciences.

[15]  H. Bayley,et al.  A storable encapsulated bilayer chip containing a single protein nanopore. , 2007, Journal of the American Chemical Society.

[16]  H. Bayley,et al.  Stochastic Sensing of TNT with a Genetically Engineered Pore , 2005, Chembiochem : a European journal of chemical biology.

[17]  H. Bayley,et al.  Stochastic Sensing with Protein Pores , 2000 .

[18]  S. Bezrukov,et al.  Current noise reveals protonation kinetics and number of ionizable sites in an open protein ion channel. , 1993, Physical review letters.

[19]  W. Hanke,et al.  Planar Lipid Bilayers: Methods and Applications , 1994 .

[20]  Andreas Offenhäusser,et al.  Membrane on a chip: a functional tethered lipid bilayer membrane on silicon oxide surfaces. , 2005, Biophysical journal.

[21]  Wolfgang Knoll,et al.  Kinetics of valinomycin-mediated K+ ion transport through tethered bilayer lipid membranes , 2003 .

[22]  H. Bayley,et al.  Prolonged Residence Time of a Noncovalent Molecular Adapter, β-Cyclodextrin, within the Lumen of Mutant α-Hemolysin Pores , 2001, The Journal of general physiology.

[23]  Ingo Köper,et al.  Functional incorporation of the pore forming segment of AChR M2 into tethered bilayer lipid membranes. , 2007, Biochimica et biophysica acta.