WSBen: A Web Services Discovery and Composition Benchmark

A novel benchmark, WSBen, for testing Web services discovery and composition is presented. WSBen includes: (1) a collection of synthetic Web services (WSDL) files with diverse characteristics and sizes; (2) test discovery and composition queries and solutions; and (3) external files for statistical analysis and AI planners. Users can fine-tune the generated WSDL files using various parameters such as skewness or matching type. It is our hope that WSBen provides useful insights for researchers evaluating the performance of Web services discovery and composition algorithms and software

[1]  Henry Kautz,et al.  Blackbox: Unifying sat-based and graph-based planning , 1999, International Joint Conference on Artificial Intelligence.

[2]  Soundar R. T. Kumara,et al.  Web Service Planner (WSPR): An Effective and Scalable Web Service Composition Algorithm , 2007, Int. J. Web Serv. Res..

[3]  Richard Fikes,et al.  STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.

[4]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[5]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[6]  Liang-Jie Zhang,et al.  Web Services Quality Testing , 2005 .

[7]  Amit P. Sheth,et al.  Adding Semantics to Web Services Standards , 2003, ICWS.

[8]  Thomas T. Tran,et al.  A Mobile Intelligent Agent-Based Architecture for E-Business , 2007, Int. J. Inf. Technol. Web Eng..

[9]  Drew McDermott,et al.  Estimated-Regression Planning for Interactions with Web Services , 2002, AIPS.

[10]  Soundar R. T. Kumara,et al.  A comparative illustration of AI planning-based web services composition , 2006, SECO.

[11]  Lisa Singh,et al.  Experience Report: A Component-Based Data Management and Knowledge Discovery Framework for Aviation Studies , 2006, Int. J. Inf. Technol. Web Eng..

[12]  Tom Bylander,et al.  The Computational Complexity of Propositional STRIPS Planning , 1994, Artif. Intell..

[13]  Amit P. Sheth,et al.  Framework for Semantic Web Process Composition , 2003, Int. J. Electron. Commer..

[14]  Nils J. Nilsson,et al.  Artificial Intelligence: A New Synthesis , 1997 .

[15]  Avrim Blum,et al.  Fast Planning Through Planning Graph Analysis , 1995, IJCAI.

[16]  Jordi Delgado,et al.  Emergence of social conventions in complex networks , 2002, Artif. Intell..

[17]  Jun Zhang,et al.  Simlarity Search for Web Services , 2004, VLDB.

[18]  Matthieu De Beule,et al.  Small Worlds: The Dynamics of Networks between Order and Randomness , 1999 .

[19]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[20]  Peter J. Denning Network laws , 2004, CACM.

[21]  Bart Selman,et al.  Unifying SAT-based and Graph-based Planning , 1999, IJCAI.

[22]  Andreas Wombacher,et al.  WSC-07: Evolving the Web Services Challenge , 2007, The 9th IEEE International Conference on E-Commerce Technology and The 4th IEEE International Conference on Enterprise Computing, E-Commerce and E-Services (CEC-EEE 2007).

[23]  David Rine,et al.  Secure Online DNS Dynamic Updates: Architecture and Implementation , 2007, Int. J. Inf. Technol. Web Eng..

[24]  Drew McDermott,et al.  A Heuristic Estimator for Means-Ends Analysis in Planning , 1996, AIPS.

[25]  Subbarao Kambhampati,et al.  A snapshot of public web services , 2005, SGMD.

[26]  M. Newman,et al.  Random graphs with arbitrary degree distributions and their applications. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  John DiMarco Web portfolio design and applications , 2006 .

[28]  David C. Rine,et al.  Agent Technologies and Web Engineering: Applications and Systems , 2008 .

[29]  Boi Faltings,et al.  Large scale testbed for type compatible service composition , 2004 .