Multi-wavelength coherent transmission using an optical frequency comb as a local oscillator

Steadily increasing data rates of optical interfaces require spectrally efficient coherent transmission using higher-order modulation formats in combination with scalable wavelength-division multiplexing (WDM) schemes. At the transmitter, optical frequency combs (OFC) lend themselves to particularly precise multi-wavelength sources for WDM transmission. In this work we demonstrate that these advantages can also be leveraged at the receiver by using an OFC as a highly scalable multi-wavelength local oscillator (LO) for coherent detection. In our experiments, we use a pair of OFC that rely on gain switching of injection-locked semiconductor lasers both for WDM transmission and intradyne reception. We synchronize the center frequency and the free spectral range of the receiver comb to the transmitter, keeping the intradyne frequencies for all data channels below 15 MHz. Using 13 WDM channels, we transmit an aggregate line rate (net data rate) of 1.104 Tbit/s (1.032 Tbit/s) over a 10 km long standard single mode fiber at a spectral efficiency of 5.16 bit/s/Hz. To the best of our knowledge, this is the first demonstration of coherent WDM transmission using synchronized frequency combs as light source at the transmitter and as multiwavelength LO at the receiver. © 2016 Optical Society of America OCIS codes: (060.0060) Fiber optics and optical communications; (060.1660) Coherent communications; (140.3520) Lasers, injection-locked; (060.4510) Optical communications; (200.4650) Optical interconnects References and links 1. P. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010). 2. C. R. Cole, “100-Gb/s and beyond transceiver technologies,” Opt. Fiber Technol. 17(5), 472–479 (2011). 3. S. Gringeri, E. B. Basch, and T. J. Xia, “Technical considerations for supporting data rates beyond 100 Gb/s,” IEEE Commun. Mag. 50(2), S21–S30 (2012). 4. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009). 5. J. Geyer, C. R. Doerr, M. Aydinlik, N. Nadarajah, A. Caballero, C. Rasmussen, and B. Mikkelsen, “Practical implementation of higher order modulation beyond 16-QAM,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (OSA, 2015), paper Th1B.1. 6. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ezra, N. Ben, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011). 7. D. Hillerkuss, R. Schmogrow, M. Meyer, S. Wolf, M. Jordan, P. Kleinow, N. Lindenmann, P. C. Schindler, A. Melikyan, X. Yang, S. Ben-Ezra, B. Nebendahl, M. Dreschmann, J. Meyer, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, L. Altenhain, T. Ellermeyer, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Single-laser 32.5 Tbit/s Nyquist WDM transmission,” J. Opt. Commun. Netw. 4(10), 715–723 (2012). Vol. 24, No. 22 | 31 Oct 2016 | OPTICS EXPRESS 25432 #272444 http://dx.doi.org/10.1364/OE.24.025432 Journal © 2016 Received 29 Jul 2016; revised 20 Sep 2016; accepted 21 Sep 2016; published 21 Oct 2016 8. E. Temprana, E. Myslivets, B. P. P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, “Overcoming Kerr-induced capacity limit in optical fiber transmission,” Science 348(6242), 1445–1448 (2015). 9. E. Temprana, V. Ataie, B. P. P. Kuo, E. Myslivets, N. Alic, and S. Radic, “Dynamic reconfiguration of parametric frequency comb for superchannel and flex-grid transmitters,” in European Conference on Optical Communication (ECOC, 2014), paper P.3.14. 10. C. Zhangyuan, Z. Paikun, L. Juhao, X. Yingying, W. Zhongying, C. Xin, C. Yuanxiang, and H. Yongqi, “Key technologies for elastic optical networks,” in 13th International Conference on Optical Communications and Networks (ICOCN, 2014), paper S32.3. 11. J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014). 12. C. Weimann, P. C. Schindler, R. Palmer, S. Wolf, D. Bekele, D. Korn, J. Pfeifle, S. Koeber, R. Schmogrow, L. Alloatti, D. Elder, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission,” Opt. Express 22(3), 3629–3637 (2014). 13. J. Pfeifle, V. Vujicic, R. T. Watts, P. C. Schindler, C. Weimann, R. Zhou, W. Freude, L. P. Barry, and C. Koos, “Flexible Terabit/s Nyquist-WDM super-channels using a gain-switched comb source,” Opt. Express 23(2), 724–738 (2015). 14. P. Marin, J. Pfeifle, M. Karpov, P. Trocha, R. Rosenberger, K. Vijayan, S. Wolf, J. N. Kemal, A. Kordts, M. Pfeiffer, V. Brasch, W. Freude, T. Kippenberg, and C. Koos, “50 Tbit/s massively parallel WDM transmission in C and L band using interleaved cavity-soliton Kerr combs,” in Conference on Lasers and Electro-Optics (OSA, 2016), paper STu1G.1. 15. V. Ataie, E. Temprana, L. Liu, E. Myslivets, B. P.-P. Kuo, N. Alic, and S. Radic, “Ultrahigh count coherent WDM channels transmission using optical parametric comb-based frequency synthesizer,” J. Lightwave Technol. 33(3), 694–699 (2015). 16. P. J. Delfyett, S. Gee, M.-T. Choi, H. Izadpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications,” J. Lightwave Technol. 24(7), 2701–2719 (2006). 17. X. Yi, N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, “Tb/s Coherent optical OFDM systems enabled by optical frequency Combs,” J. Lightwave Technol. 28(14), 2054–2061 (2010). 18. N. K. Fontaine, G. Raybon, B. Guan, A. L. Adamiecki, P. Winzer, R. Ryf, A. Konczykowska, F. Jorge, J.-Y. Dupuy, L. L. Buhl, S. Chandrasekhar, R. Delbue, P. Pupalaikis, and A. Sureka, “228-GHz coherent receiver using digital optical bandwidth interleaving and reception of 214-GBd (856-Gb/s) PDM-QPSK,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (OSA, 2012), paper Th.3.A.1. 19. N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010). 20. J. N. Kemal, J. Pfeifle, P. Marin, M. D. Gutierrez Pascual, F. Smyth, W. Freude, and C. Koos, “Parallel multiwavelength intradyne reception using an optical frequency comb as a local oscillator,” in European Conference and Ehxibition of Optical Communication (ECOC, 2015), paper P.4.18. 21. P. M. Anandarajah, R. Maher, Y. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011). 22. R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40 nm wavelength tunable gain-switched optical comb source,” Opt. Express 19(26), B415–B420 (2011). 23. G. Yabre, H. de Waardt, H. P. A. Van den Boom, and G.-D. Khoe, “Noise characteristics of single-mode semiconductor lasers under external light injection,” IEEE J. Quantum Electron. 36(3), 385–393 (2000). 24. M. D. G. Pascual, R. Zhou, F. Smyth, P. M. Anandarajah, and L. P. Barry, “Software reconfigurable highly flexible gain switched optical frequency comb source,” Opt. Express 23(18), 23225–23235 (2015). 25. R. Zhou, P. M. Anandarajah, D. Gutierrez Pascual, J. O’Carroll, R. Phelan, B. Kelly, and L. P. Barry, “Monolithically integrated 2-section lasers for injection locked gain switched comb generation,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (OSA, 2014), paper Th3A.3. 26. R. Zhou, T. N. Huynh, V. Vujicic, P. M. Anandarajah, and L. P. Barry, “Phase noise analysis of injected gain switched comb source for coherent communications,” Opt. Express 22(7), 8120–8125 (2014). 27. R. Noé, W. B. Sessa, R. Welter, and L. G. Kazovsky, “New FSK phase-diversity receiver in a 150 Mbit/s coherent optical transmission system,” Electron. Lett. 24(9), 567–568 (1988). 28. F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010). 29. OptSim, (Synopsys, Inc., 2016), https://optics.synopsys.com/rsoft/rsoft-system-network-optsim.html. 30. K. Kikuchi, “Characterization of semiconductor-laser phase noise and estimation of bit-error rate performance with low-speed offline digital coherent receivers,” Opt. Express 20(5), 5291–5302 (2012). 31. TL5000DCJ, (OCLARO, 2016), http://www.oclaro.com/product/tl5000dcj 32. MAFA 1023, (emcore, 2016), http://emcore.com/wp-content/uploads/2016/02/MAFA-1000-Series.pdf 33. J. Pfeifle, A. Kordts, P. Marin, M. Karpov, M. Pfeiffer, V. Brasch, R. Rosenberger, J. Kemal, and S. Wolf, “Full C and L-Band Transmission at 20 Tbit / s Using Cavity-Soliton Kerr Frequency Combs,” in CLEO: 2015 Postdeadline Paper Digest (OSA, 2015), paper JTH5C.8. Vol. 24, No. 22 | 31 Oct 2016 | OPTICS EXPRESS 25433

[1]  W. Freude,et al.  Flexible terabit/s Nyquist-WDM super-channels using a gain-switched comb source. , 2015, Optics express.

[2]  Takashi Mizuochi,et al.  Forward error correction for 100 G transport networks , 2010, IEEE Communications Magazine.

[3]  S. Radic,et al.  Ultrahigh Count Coherent WDM Channels Transmission Using Optical Parametric Comb-Based Frequency Synthesizer , 2015, Journal of Lightwave Technology.

[4]  J. Leuthold,et al.  Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission. , 2014, Optics express.

[5]  M. Lauermann,et al.  Coherent terabit communications with microresonator Kerr frequency combs , 2013, Nature Photonics.

[6]  Rui Zhou,et al.  Software reconfigurable highly flexible gain switched optical frequency comb source. , 2015, Optics express.

[7]  H. De Waardt,et al.  Noise characteristics of single-mode semiconductor lasers under external light injection , 2000, IEEE Journal of Quantum Electronics.

[8]  K. Kikuchi Characterization of semiconductor-laser phase noise and estimation of bit-error rate performance with low-speed offline digital coherent receivers. , 2012, Optics express.

[9]  Leonid G. Kazovsky,et al.  New FSK phase-diversity receiver in a 150 mbit/s coherent optical transmission system , 1988 .

[10]  Sylwester Latkowski,et al.  40nm wavelength tunable gain-switched optical comb source , 2011, 2011 37th European Conference and Exhibition on Optical Communication.

[11]  Vidak Vujicic,et al.  Phase noise analysis of injected gain switched comb source for coherent communications. , 2014, Optics express.

[12]  Linjie Zhou,et al.  Real-time full-field arbitrary optical waveform measurement , 2010 .

[13]  S. Gee,et al.  Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications , 2006, Journal of Lightwave Technology.

[14]  R Phelan,et al.  Generation of Coherent Multicarrier Signals by Gain Switching of Discrete Mode Lasers , 2011, IEEE Photonics Journal.

[15]  B. Mikkelsen,et al.  Practical implementation of higher order modulation beyond 16-QAM , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[16]  Liam P. Barry,et al.  Monolithically integrated 2-section lasers for injection locked gain switched comb generation , 2014, OFC 2014.

[17]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[18]  Nicolas K Fontaine,et al.  Tb/s Coherent Optical OFDM Systems Enabled by Optical Frequency Combs , 2010, Journal of Lightwave Technology.

[19]  S. Radic,et al.  Overcoming Kerr-induced capacity limit in optical fiber transmission , 2015, Science.

[20]  Christopher R. Cole,et al.  100-Gb/s and beyond transceiver technologies , 2011 .