Systematic effects in LOD from SLR observations

Beside the estimation of station coordinates and the Earth’s gravity field, laser ranging observations to near-Earth satellites can be used to determine the rotation of the Earth. One parameter of this rotation is ΔLOD (excess Length Of Day) which describes the excess revolution time of the Earth w.r.t. 86,400 s. Due to correlations among the different parameter groups, it is difficult to obtain reliable estimates for all parameters. In the official ΔLOD products of the International Earth Rotation and Reference Systems Service (IERS), the ΔLOD information determined from laser ranging observations is excluded from the processing. In this paper, we study the existing correlations between ΔLOD, the orbital node Ω, the even zonal gravity field coefficients, cross-track empirical accelerations and relativistic accelerations caused by the Lense–Thirring and deSitter effect in detail using first order Gaussian perturbation equations. We found discrepancies due to different a priories by using different gravity field models of up to 1.0ms for polar orbits at an altitude of 500 km and up to 40.0ms, if the gravity field coefficients are estimated using only observations to LAGEOS 1. If observations to LAGEOS 2 are included, reliable ΔLOD estimates can be achieved. Nevertheless, an impact of the a priori gravity field even on the multi-satellite ΔLOD estimates can be clearly identified. Furthermore, we investigate the effect of empirical cross-track accelerations and the effect of relativistic accelerations of near-Earth satellites on ΔLOD. A total effect of 0.0088 ms is caused by not modeled Lense–Thirring and deSitter terms. The partial derivatives of these accelerations w.r.t. the position and velocity of the satellite cause very small variations (0.1μs) on ΔLOD.

[1]  On the reliability of the so-far performed tests for measuring the Lense-Thirring effect with the LAGEOS satellites , 2004, gr-qc/0411024.

[2]  C. Bizouard,et al.  The Combined Solution C04 for Earth Orientation Parameters Consistent with International Terrestrial Reference Frame 2005 , 2009 .

[3]  K. Senior,et al.  Status and Prospects for Combined GPS LOD and VLBI UT1 Measurements , 2010 .

[4]  M. Cheng,et al.  Deceleration in the Earth's oblateness , 2013 .

[5]  Detlef Angermann,et al.  Adjustment of EOP and gravity field parameter from SLR observations , 2011 .

[6]  Jean-Charles Marty,et al.  EIGEN-6C: A High-Resolution Global Gravity Combination Model Including GOCE Data , 2014 .

[7]  Markus Rothacher,et al.  Estimation of nutation using the Global Positioning System , 1999 .

[8]  Gerhard Beutler,et al.  Methods of celestial mechanics. Vol. II: Application to planetary system geodynamics and satellite geodesy , 2005 .

[9]  Ulrich Schreiber,et al.  Erdrotation und globale dynamische Prozesse , 2003 .

[10]  General relativity and satellite orbits: The motion of a test particle in the Schwarzschild metric , 1977 .

[11]  J. G. Williams,et al.  Secular variation of Earth's gravitational harmonic J2 coefficient from Lageos and nontidal acceleration of Earth rotation , 1983, Nature.

[12]  I. Ciufolini The lageos lense-thirring precession and the LAGEOS non-gravitational nodal perturbations — I , 1987 .

[13]  G. Beutler,et al.  The New IAG Structure , 2004 .

[14]  T. Lederle,et al.  Expressions for the precession quantities based upon the IAU /1976/ system of astronomical constants , 1977 .

[15]  M. Cheng,et al.  Variations in the Earth's oblateness during the past 28 years , 2004 .

[16]  Oliver Montenbruck,et al.  Satellite Orbits: Models, Methods and Applications , 2000 .

[17]  X. Collilieux,et al.  Global optimization of core station networks for space geodesy: application to the referencing of the SLR EOP with respect to ITRF , 2009 .

[18]  L. Combrinck Satellite Laser Ranging , 2010 .

[19]  J. Pérez-Mercader,et al.  Test of general relativity and measurement of the lense-thirring effect with two earth satellites , 1998, Science.

[20]  W. D. Sitter On Einstein's Theory of Gravitation and its Astronomical Consequences , 1916 .

[21]  Detlef Angermann,et al.  Benefits of SLR in epoch reference frames , 2011 .

[22]  H. Plag,et al.  Global geodetic observing system : meeting the requirements of a global society on a changing planet in 2020 , 2009 .

[23]  M. Cheng,et al.  GGM02 – An improved Earth gravity field model from GRACE , 2005 .

[24]  Ignazio Ciufolini,et al.  Gravitation and Inertia , 2018 .

[25]  Z. Altamimi,et al.  ITRF2008: an improved solution of the international terrestrial reference frame , 2011 .

[26]  M. Watkins,et al.  Relativistic effects for near-earth satellite orbit determination , 1990, Celestial Mechanics and Dynamical Astronomy.

[27]  Manuela Seitz,et al.  The 2008 DGFI realization of the ITRS: DTRF2008 , 2012, Journal of Geodesy.

[28]  The Impact of the Static Part of the Earth's Gravity Field on Some Tests of General Relativity with Satellite Laser Ranging , 2002, gr-qc/0203050.

[29]  Markus Rothacher,et al.  Integrated Global Geodetic Observing System (IGGOS) - science rationale , 2005 .

[30]  J. Lense,et al.  Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie , 1918 .

[31]  David M. Lucchesi,et al.  Reassessment of the error modelling of non-gravitational perturbations on LAGEOS II and their impact in the Lense–Thirring determination. Part I , 2001 .

[32]  N. K. Pavlis,et al.  Temporal variations of the Earth's gravitational field from satellite laser ranging to LAGEOS , 1993 .

[33]  Hermann Drewes,et al.  Geodetic Reference Frames , 2009 .

[34]  Michael R Pearlman,et al.  THE INTERNATIONAL LASER RANGING SERVICE , 2007 .

[35]  E. C. Pavlis,et al.  A confirmation of the general relativistic prediction of the Lense–Thirring effect , 2004, Nature.