暂无分享,去创建一个
[1] Richard M. Karp,et al. A Phenomenon in the Theory of Sorting , 1970, SWAT.
[2] Benjamin I. P. Rubinstein,et al. Geometric & Topological Representations of Maximum Classes with Applications to Sample Compression , 2008, COLT.
[3] Andreas W. M. Dress,et al. Towards a theory of holistic clustering , 1996, Mathematical Hierarchies and Biology.
[4] Peter L. Bartlett,et al. Corrigendum to "Shifting: One-inclusion mistake bounds and sample compression" [J. Comput. System Sci 75 (1) (2009) 37-59] , 2010, J. Comput. Syst. Sci..
[5] Sally Floyd,et al. Sample compression, learnability, and the Vapnik-Chervonenkis dimension , 2004, Machine Learning.
[6] Vladimir Vapnik,et al. Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .
[7] Hans-Jürgen Bandelt,et al. Combinatorics of lopsided sets , 2006, Eur. J. Comb..
[8] Manfred K. Warmuth,et al. Unlabeled Compression Schemes for Maximum Classes, , 2007, COLT.
[9] Béla Bollobás,et al. Defect Sauer Results , 1995, J. Comb. Theory A.
[10] Norbert Sauer,et al. On the Density of Families of Sets , 1972, J. Comb. Theory A.
[11] Béla Bollobás,et al. Reverse Kleitman Inequalities , 1989 .
[12] Donald E. Knuth,et al. The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .
[13] Donald E. Knuth,et al. Sorting and Searching , 1973 .
[14] S. Shelah. A combinatorial problem; stability and order for models and theories in infinitary languages. , 1972 .
[15] Emo Welzl,et al. Vapnik-Chervonenkis dimension and (pseudo-)hyperplane arrangements , 1994, Discret. Comput. Geom..
[16] G. Greco,et al. Embeddings and the Trace of Finite Sets , 1998, Inf. Process. Lett..
[17] J. Lawrence. Lopsided sets and orthant-intersection by convex sets , 1983 .
[18] Benjamin I. P. Rubinstein,et al. A Geometric Approach to Sample Compression , 2009, J. Mach. Learn. Res..
[19] Peter L. Bartlett,et al. Shifting: One-inclusion mistake bounds and sample compression , 2009, J. Comput. Syst. Sci..