Shattering-Extremal Systems

The Shatters relation and the VC dimension have been investigated since the early seventies. These concepts have found numerous applications in statistics, combinatorics, learning theory and computational geometry. Shattering extremal systems are set-systems with a very rich structure and many different characterizations. The goal of this thesis is to elaborate on the structure of these systems.

[1]  Richard M. Karp,et al.  A Phenomenon in the Theory of Sorting , 1970, SWAT.

[2]  Benjamin I. P. Rubinstein,et al.  Geometric & Topological Representations of Maximum Classes with Applications to Sample Compression , 2008, COLT.

[3]  Andreas W. M. Dress,et al.  Towards a theory of holistic clustering , 1996, Mathematical Hierarchies and Biology.

[4]  Peter L. Bartlett,et al.  Corrigendum to "Shifting: One-inclusion mistake bounds and sample compression" [J. Comput. System Sci 75 (1) (2009) 37-59] , 2010, J. Comput. Syst. Sci..

[5]  Sally Floyd,et al.  Sample compression, learnability, and the Vapnik-Chervonenkis dimension , 2004, Machine Learning.

[6]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[7]  Hans-Jürgen Bandelt,et al.  Combinatorics of lopsided sets , 2006, Eur. J. Comb..

[8]  Manfred K. Warmuth,et al.  Unlabeled Compression Schemes for Maximum Classes, , 2007, COLT.

[9]  Béla Bollobás,et al.  Defect Sauer Results , 1995, J. Comb. Theory A.

[10]  Norbert Sauer,et al.  On the Density of Families of Sets , 1972, J. Comb. Theory A.

[11]  Béla Bollobás,et al.  Reverse Kleitman Inequalities , 1989 .

[12]  Donald E. Knuth,et al.  The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .

[13]  Donald E. Knuth,et al.  Sorting and Searching , 1973 .

[14]  S. Shelah A combinatorial problem; stability and order for models and theories in infinitary languages. , 1972 .

[15]  Emo Welzl,et al.  Vapnik-Chervonenkis dimension and (pseudo-)hyperplane arrangements , 1994, Discret. Comput. Geom..

[16]  G. Greco,et al.  Embeddings and the Trace of Finite Sets , 1998, Inf. Process. Lett..

[17]  J. Lawrence Lopsided sets and orthant-intersection by convex sets , 1983 .

[18]  Benjamin I. P. Rubinstein,et al.  A Geometric Approach to Sample Compression , 2009, J. Mach. Learn. Res..

[19]  Peter L. Bartlett,et al.  Shifting: One-inclusion mistake bounds and sample compression , 2009, J. Comput. Syst. Sci..