Interactions of quadrupolar nematic colloids.

We present experimental and theoretical study of colloidal interactions in quadrupolar nematic liquid crystal colloids, confined to a thin planar nematic cell. Using the laser tweezers, the particles have been positioned in the vicinity of other colloidal particles and their interactions have been determined using particle tracking video microscopy. Several types of interactions have been analyzed: (i) quadrupolar pair interaction, (ii) the interaction of an isolated quadrupole with a quadrupolar chain, and (iii) the interaction of an isolated quadrupolar colloidal particle with a two-dimensional (2D) quadrupolar crystallite. In all cases, the interactions are of the order of several 100k(B)T for 2 microm particles, which gives rise to relatively stable 2D colloidal crystals. The experimental results are compared to the predictions of Landau-de Gennes theory and we find a relatively good qualitative agreement.