Hydrogen bonding and stacking of DNA bases: a review of quantum-chemical ab initio studies.

Ab initio quantum-chemical calulations with inclusion of electron correlation made since 1994 (such reliable calculations were not feasible before) significantly modified our view on interactions of nucleic acid bases. These calculations allowed to perform the first reliable comparison of the strength of stacked and hydrogen bonded pairs of nucleic acid bases, and to characterize the nature of the base-base interactions. Although hydrogen-bonded complexes of nucleobases are primarily stabilized by the electrostatic interaction, the dispersion attraction is also important. The stacked pairs are stabilized by dispersion attraction, however, the mutual orientation of stacked bases is determined rather by the electrostatic energy. Some popular theories of stacking were ruled out: The theory based on attractive interactions of polar exocyclic groups of bases with delocalized electrons of the aromatic rings (Bugg et al., Biopolymers 10, 175 (1971), and the pi-pi interactions model (C.A. Hunter, J. Mol. Biol. 230, 1025 (1993)). The calculations demonstrated that amino groups of nucleobases are very flexible and intrinsically nonplanar, allowing hydrogen-bond-like interactions which are oriented out of the plane of the nucleobase. Many H-bonded DNA base pairs are intrinsically nonplanar. Higher-level ab initio calculations provide a unique set of reliable and consistent data for parametrization and verification of empirical potentials. In this article, we present a short survey of the recent calculations, and discuss their significance and limitations. This summary is written for readers which are not experts in computational quantum chemistry.

[1]  Peter A. Kollman,et al.  Theoretical Investigation of the Hydrogen Bond Strengths in Guanine-Cytosine and Adenine-Thymine Base Pairs , 1994 .

[2]  M. Aida,et al.  An ab initio molecular orbital study on the sequence-dependency of DNA conformation: an evaluation of intra- and inter-strand stacking interaction energy. , 1988, Journal of theoretical biology.

[3]  Interaction Between the Guanine Amino Group and the Adenine Six Membered Ring Stabilizes the Unusual Conformation of the CpA Step in B-DNA , 1994 .

[4]  J. D. Bene Molecular orbital theory of the hydrogen bond: XXXII. The effect of H+ and Li+ association on the AT and GC pairs , 1985 .

[5]  J. Šponer,et al.  H-Bonded and Stacked DNA Base Pairs: Cytosine Dimer. An Ab Initio Second-Order Moeller-Plesset Study , 1995 .

[6]  Jerzy Leszczynski,et al.  Guanine, 6-thioguanine and 6-selenoguanine: ab initio HF/DZP and MP2/DZP comparative studies , 1994 .

[7]  B. Rode,et al.  The influence of Li+, Na+, Mg2+, Ca2+, and Zn2+ ions on the hydrogen bonds of the Watson–Crick base pairs , 1990, Biopolymers.

[8]  J. Šponer,et al.  DNA base amino groups and their role in molecular interactions: Ab initio and preliminary density functional theory calculations , 1996 .

[9]  P. Hobza,et al.  Nonempirical calculations on all the 29 possible DNA base pairs , 1987 .

[10]  J. Šponer,et al.  Nature of Nucleic Acid−Base Stacking: Nonempirical ab Initio and Empirical Potential Characterization of 10 Stacked Base Dimers. Comparison of Stacked and H-Bonded Base Pairs , 1996 .

[11]  Arnold T. Hagler,et al.  On the use of quantum energy surfaces in the derivation of molecular force fields , 1994 .

[12]  H. Krause,et al.  Dissociation energy of neutral and ionic benzene‐noble gas dimers by pulsed field threshold ionization spectroscopy , 1993 .

[13]  M. Guéron,et al.  A tetrameric DNA structure with protonated cytosine-cytosine base pairs , 1993, Nature.

[14]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[15]  R. Ornstein,et al.  Correlation of crystallographically determined and computationally predicted hydrogen-bonded pairing configurations of nucleic acid bases. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[16]  T. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[17]  C. Hunter,et al.  Sequence-dependent DNA structure. The role of base stacking interactions. , 1993, Journal of molecular biology.

[18]  Jerzy Leszczynski,et al.  Molecular Structure and Vibrational IR Spectra of Cytosine and Its Thio and Seleno Analogues by Density Functional Theory and Conventional ab initio Calculations , 1996 .

[19]  U. Singh,et al.  A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .

[20]  N. L. Allinger,et al.  Hydrogen bonding in MM2 , 1988 .

[21]  Pavel Hobza,et al.  Potential Energy Surface of the Benzene Dimer: Ab Initio Theoretical Study , 1994 .

[22]  I. Gould,et al.  Accurate calculations of the relative energies of the tautomers of cytosine and guanine , 1989 .

[23]  J. Šponer,et al.  Density functional theory and molecular clusters , 1995, Journal of Computational Chemistry.

[24]  J. Šponer,et al.  Nonplanar DNA base pairs. , 1996, Journal of biomolecular structure & dynamics.

[25]  Alexander D. MacKerell,et al.  An all-atom empirical energy function for the simulation of nucleic acids , 1995 .

[26]  M. Sevilla,et al.  Ab initio molecular orbital calculations of DNA bases and their radical ions in various protonation states: evidence for proton transfer in GC base pair radical anions , 1992 .

[27]  Juan J. Novoa,et al.  Evaluation of the Density Functional Approximation on the Computation of Hydrogen Bond Interactions , 1995 .

[28]  Bernard Pullman,et al.  Intermolecular interactions, from diatomics to biopolymers , 1978 .

[29]  P. Hobza,et al.  A quantum chemical study of the effect of Na+ on the hydrogen bonds in the adenine-thymine base-pair. , 1984, Biophysical chemistry.

[30]  J. Šponer,et al.  Bifurcated hydrogen bonds in DNA crystal structures. An ab initio quantum chemical study , 1994 .

[31]  R. Jernigan,et al.  Geometries, charges, dipole moments and interaction energies of normal, tautomeric and novel bases. , 1994, Journal of biomolecular structure & dynamics.

[32]  M. Sevilla,et al.  Ab initio molecular orbital calculations on DNA radical ions. 4. Effect of hydration on electron affinities and ionization potentials of base pairs , 1993 .

[33]  B Pullman,et al.  Molecular orbital calculations on the conformation of amino acid residues of proteins. , 1974, Advances in protein chemistry.

[34]  J. Šponer,et al.  Sequence dependent intrinsic deformability of the DNA base amino groups. An ab initio quantum chemical analysis , 1994 .

[35]  Richard L. Jaffe,et al.  Comparative Study of Force Fields for Benzene , 1996 .

[36]  M. Egli,et al.  Stereoelectronic effects of deoxyribose O4' on DNA conformation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[37]  N. V. Riggs AN AB INITIO STUDY OF THE STATIONARY STRUCTURES OF THE MAJOR GAS-PHASE TAUTOMER OF ADENINE , 1991 .

[38]  Richard J. Hall,et al.  Tautomerism in uracil, cytosine and guanine: a comparison of electron correlation predicted by ab initio and density functional theory methods , 1995 .

[39]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[40]  Arieh Warshel,et al.  Simulation of enzyme reactions using valence bond force fields and other hybrid quantum/classical approaches , 1993 .

[41]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[42]  J. Šponer,et al.  Structures and Energies of Hydrogen-Bonded DNA Base Pairs. A Nonempirical Study with Inclusion of Electron Correlation , 1996 .

[43]  J. V. Lenthe,et al.  State of the Art in Counterpoise Theory , 1994 .

[44]  V. Danilov,et al.  Quantum mechanical study of bases interactions in various associates in atomic dipole approximation. , 1976, Journal of theoretical biology.

[45]  H. Günthard,et al.  QUANTUM CHEMICAL STUDY OF STRUCTURE AND STABILITY OF ALL 14 ISOMERS OF ISOCYTOSINE , 1996 .

[46]  M. Aida,et al.  Ab initio molecular orbital study on the pairing and stacking interactions between nucleic acid bases in relation to the biological activities , 1988 .

[47]  Jerzy Leszczynski,et al.  Spontaneous DNA Mutations Induced by Proton Transfer in the Guanine·Cytosine Base Pairs: An Energetic Perspective , 1996 .

[48]  M. Aida,et al.  An ab initio molecular orbital study on the stacking interaction between nucleic acid bases: Dependence on the sequence and relation to the conformation , 1986 .

[49]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[50]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[51]  Benny G. Johnson,et al.  Structure, Energetics, and Force Fields of the Cyclic Formamide Dimer: MP2, Hartree-Fock, and Density Functional Study , 1995 .

[52]  Pavel Hobza,et al.  Structure and Properties of Benzene-Containing Molecular Clusters - Nonempirical Ab-Initio Calculations and Experiments , 1994 .

[53]  Ian R. Gould,et al.  Accurate calculations of the oxo–hydroxy tautomers of uracil , 1990 .

[54]  M. Aida Characteristics of the Watson‐Crick type hydrogen‐bonded DNA base pairs: An ab initio molecular orbital study , 1988 .

[55]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .

[56]  Base stacking in cytosine dimer. A comparison of correlated ab initio calculations with three empirical potential models and density functional theory calculations , 1996 .

[57]  L. Sukhodub,et al.  Experimental studies of molecular interactions between nitrogen bases of nucleic acids , 1979, Biopolymers.

[58]  S. Suhai Structure and bonding in the formamide crystal: A complete fourth‐order many‐body perturbation theoretical study , 1995 .

[59]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[60]  P. Hobza,et al.  Perturbation of hydrogen bonds in the adenine ... thymine base pair by Na+, Mg2+, Ca2+ and NH4+ cations. , 1985, Journal of biomolecular structure & dynamics.

[61]  Martin Head-Gordon,et al.  Quadratic configuration interaction. A general technique for determining electron correlation energies , 1987 .

[62]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[63]  R. Czerminski,et al.  Quantum-mechanical studies of the structures of cytosine dimers and guanine—cytosine pairs , 1989 .

[64]  E. W. Schlag,et al.  Base Pair Formation of Free Nucleobases and Mononucleosides in the Gas Phase , 1994 .

[65]  Jerzy Leszczynski,et al.  Molecular Structure and Infrared Spectra of Adenine. Experimental Matrix Isolation and Density Functional Theory Study of Adenine 15N Isotopomers , 1996 .

[66]  Peter Pulay,et al.  CAN (SEMI) LOCAL DENSITY FUNCTIONAL THEORY ACCOUNT FOR THE LONDON DISPERSION FORCES , 1994 .

[67]  M. Dewar,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[68]  H. Lüthi,et al.  An ab initio derived torsional potential energy surface for (H2O)3. II. Benchmark studies and interaction energies , 1995 .

[69]  L. Paglieri,et al.  A Density Functional Study of Tautomerism of Uracil and Cytosine , 1994 .

[70]  A. Rich,et al.  Crystal structure of a four-stranded intercalated DNA: d(C4). , 1994, Biochemistry.

[71]  M. Sundaralingam,et al.  Stereochemistry of nucleic acids and their constituents. X. solid‐slate base‐slacking patterns in nucleic acid constituents and polynucleotides , 1971, Biopolymers.

[72]  M. Szczęśniak,et al.  Origins of Structure and Energetics of van der Waals Clusters from ab Initio Calculations , 1994 .

[73]  A. Sarai,et al.  Theoretical studies on the interaction of proteins with base pairs. I: Ab initio calculation for the effect of H-bonding interaction of proteins on the stability of adenine-uracil pair , 1984 .

[74]  R. Ornstein,et al.  Correlation of Tm and sequence of DNA duplexes with ΔH computed by an improved empirical potential method , 1983, Biopolymers.

[75]  F. J. Luque,et al.  THEORETICAL STUDY OF THE TAUTOMERISM AND PROTONATION OF 7-AMINOPYRAZOLOPYRIMIDINE IN THE GAS PHASE AND IN AQUEOUS SOLUTION , 1995 .

[76]  N. E. Hall,et al.  J. Mol. Struct. (Theochem) , 1996 .

[77]  J. Šponer,et al.  Base stacking and hydrogen bonding in protonated cytosine dimer: the role of molecular ion-dipole and induction interactions. , 1996, Journal of biomolecular structure & dynamics.

[78]  Kari Laasonen,et al.  Structures of small water clusters using gradient-corrected density functional theory , 1993 .

[79]  B. Rode,et al.  The influence of Mg2+ ion on the hydrogen bonds of the adeninethymine base pair , 1983 .

[80]  J. Šponer,et al.  G.C base pair in parallel-stranded DNA--a novel type of base pairing: an ab initio quantum chemical study. , 1994, Journal of biomolecular structure & dynamics.

[81]  K. Morokuma,et al.  Molecular orbital studies of electron donor-acceptor complexes. II. Carbonyl cyanide-benzene complex and dispersion energy contribution , 1975 .

[82]  J. Stewart Optimization of parameters for semiempirical methods I. Method , 1989 .

[83]  J. Leszczynski Are the amino groups in the nucleic acid bases coplanar with the molecular rings? Ab initio HF/6‐31G* and MP2/6‐31G* studies , 1992 .

[84]  William L. Jorgensen,et al.  OPLS potential functions for nucleotide bases. Relative association constants of hydrogen-bonded base pairs in chloroform , 1991 .

[85]  J. Florián,et al.  Theoretical investigation of the molecular structure of the pi kappa DNA base pair. , 1995, Journal of biomolecular structure & dynamics.

[86]  Benny G. Johnson,et al.  Comparison and Scaling of Hartree-Fock and Density Functional Harmonic Force Fields. 1. Formamide Monomer , 1994 .

[87]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[88]  Dennis R. Salahub,et al.  Gaussian density functional calculations on hydrogen-bonded systems , 1992 .

[89]  J. Šponer,et al.  Nonplanar geometries of DNA bases. Ab initio second-order Moeller-Plesset study , 1994 .

[90]  K. Lammertsma,et al.  2,4-dithiouracil tautomers : structures and energies , 1991 .