What can we Learn from Anisotropic Temperature Factors

anisotropic temperature factors provide an interesting new piece of information: the direction dependence of the atomic mean square displacements. Some basic concepts to access this information and their application to models of protein molecules in the crystalline state will be described in this article. More comprehensive introductions can be found in the articles by Dunitz et al. [3, 4] and Trueblood [5] and in the book by Willis & Pryor [6].

[1]  D. Phillips,et al.  Crystallographic studies of the dynamic properties of lysozyme , 1979, Nature.

[2]  Thomas Thüne,et al.  Thermal diffuse X-ray scattering and its contribution to understanding protein dynamics. , 1995, Progress in biophysics and molecular biology.

[3]  G. Sheldrick,et al.  SHELXL: high-resolution refinement. , 1997, Methods in enzymology.

[4]  G. Petsko,et al.  Conformational substates in a protein: structure and dynamics of metmyoglobin at 80 K. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[5]  István Hargittai,et al.  Accurate molecular structures : their determination and importance , 1992 .

[6]  V S Lamzin,et al.  A self-validation technique for protein structure refinement: the extended Hamilton test. , 1996, Acta crystallographica. Section D, Biological crystallography.

[7]  J. Dunitz,et al.  Internal Molecular Motion of Triphenylphosphine Oxide: Analysis of Atomic Displacement Parameters for Orthorhombic and Monoclinic Crystal Modifications at 100 and 150 K. , 1986 .

[8]  D. Cruickshank,et al.  The analysis of the anisotropic thermal motion of molecules in crystals , 1956 .

[9]  Wayne A. Hendrickson,et al.  A restrained-parameter thermal-factor refinement procedure , 1980 .

[10]  J. Doucet,et al.  Diffuse scattering in protein crystallography , 1995, Quarterly Reviews of Biophysics.

[11]  A. W. Pryor,et al.  Thermal vibrations in crystallography , 1975 .

[12]  Jack D. Dunitz,et al.  Atomic Motions in Molecular Crystals from Diffraction Measurements , 1988 .

[13]  Jack D. Dunitz,et al.  Interpretation of atomic displacement parameters from diffraction studies of crystals , 1988 .

[14]  G. Sheldrick Phase annealing in SHELX-90: direct methods for larger structures , 1990 .

[15]  K. N. Trueblood,et al.  On the rigid-body motion of molecules in crystals , 1968 .

[16]  Z. Dauter,et al.  Proteins at atomic resolution. , 1995, Current opinion in structural biology.

[17]  J Hauser,et al.  PEANUT: computer graphics program to represent atomic displacement parameters. , 1990, Journal of molecular graphics.

[18]  A. Brünger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures , 1992, Nature.

[19]  M. Eisenstein,et al.  Low-temperature study of the A-DNA fragment d(GGGCGCCC). , 1988, Acta crystallographica. Section B, Structural science.

[20]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[21]  Jack D. Dunitz,et al.  A test for rigid‐body vibrations based on a generalization of Hirshfeld's `rigid‐bond' postulate , 1978 .

[22]  N Go,et al.  Normal mode refinement: crystallographic refinement of protein dynamic structure. I. Theory and test by simulated diffraction data. , 1992, Journal of molecular biology.