A graphical method for the preliminary design of ternary simple distillation columns at finite reflux

Abstract The present study proposes a graphical method for the design of ternary distillation systems at finite reflux. Here key design parameters are determined, in particular feed stage location and the number of theoretical stages required for separation at finite reflux for ideal and nonideal systems in simple columns. The procedure provides designers with a visual tool to determine the design parameters simultaneously and no additional calculations are required unlike current approaches. The proposed graphical method correlated to the Fenske-Underwood-Gilliland (FUG) method for ideal systems. The parameters obtained from the proposed graphical allow for implementation in rigorous simulators as starting values to achieve a converged column with the first simulation and less computational difficulty.

[1]  Kazuo Kojima,et al.  Isobaric vapor-liquid equilibria for acetone + chloroform + benzene and the three constituent binary systems , 1991 .

[2]  Rafiqul Gani,et al.  Simple new algorithm for distillation column design , 2000 .

[3]  Steinar Hauan,et al.  A graphical method for designing reactive distillation columns. II. The McCabe-Thiele method , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  Arthur W. Westerberg,et al.  The product composition regions of azeotropic distillation columns. 2. Separability in two-feed columns and entrainer selection , 1993 .

[5]  Tsung-Jen Ho,et al.  Extended Ponchon−Savarit Method for Graphically Analyzing and Designing Internally Heat-Integrated Distillation Columns , 2010 .

[6]  Michael F. Malone,et al.  Conceptual design of distillation systems , 2001 .

[7]  E. R. Gilliland,et al.  Multicomponent Rectification Estimation of the Number of Theoretical Plates as a Function of the Reflux Ratio , 1940 .

[8]  Michael F. Malone,et al.  Nonideal Multicomponent Distillation: Use of Bifurcation Theory for Design , 1991 .

[9]  Francisco J. L. Castillo,et al.  Distillation design and retrofit using stage-composition lines , 2000 .

[10]  R. J. Hengstebeck Distillation: Principles and Design Procedures , 1976 .

[11]  Warren D. Seider,et al.  Journal review. Azeotropic distillation , 1996 .

[12]  E. W. Thiele,et al.  Graphical Design of Fractionating Columns , 1925 .

[13]  Laura A. Pellegrini,et al.  Use of normal boiling point correlations for predicting critical parameters of paraffins for vapour–liquid equilibrium calculations with the SRK equation of state , 2009 .

[14]  Francisco J. L. Castillo,et al.  Optimal design of complex azeotropic distillation columns , 2000 .

[15]  P. T. Eubank,et al.  Thermodynamic properties of propyl alcohol , 1972 .

[16]  A. Underwood,et al.  Fractional Distillation of Multicomponent Mixtures , 1949 .

[17]  C. Maravelias,et al.  From graphical to model‐based distillation column design: A McCabe‐Thiele‐inspired mathematical programming approach , 2019, AIChE Journal.

[18]  J. Adolph,et al.  Thermodynamic Properties of n-Propanol , 1972 .

[19]  Phillip C. Wankat,et al.  Separation Process Engineering , 2006 .

[20]  Paul M. Mathias Visualizing the McCabe-Thiele Diagram , 2009 .

[21]  A. Vogelpohl Distillation: The Theory , 2015 .

[22]  Multicomponent Distillation Design through Equilibrium Theory , 1998 .

[23]  Naadhira Seedat,et al.  Novel representation of vapour-liquid equilibrium curves for multicomponent systems: design of total reflux distillation columns , 2020 .