Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property

for every x ∈ C, and that T be continuous for some N ≥ 1. The stronger definition (cf. Goebel and Kirk [8]) requires that each iterate T be Lipschitzian with Lipschitz constants Ln → 1 as n → ∞. For our iteration method we find it convenient to introduce a definition somewhere between these two: T is asymptotically nonexpansive in the intermediate sense provided T is uniformly continuous and lim sup n→∞ sup x,y∈C (‖Tx− Ty‖ − ‖x− y‖) ≤ 0 .

[1]  S. Reich,et al.  Opial's property and James' quasi-reflexive spaces , 1994 .

[2]  S. Prus Banach spaces with the uniform Opial property , 1992 .

[3]  H. Oka Nonlinear ergodic theorems for commutative semigroups of asymptotically nonexpansive mappings , 1992 .

[4]  Hong-Kun Xu,et al.  A nonlinear ergodic theorem for asymptotically nonexpansive mappings , 1992, Bulletin of the Australian Mathematical Society.

[5]  J. Górnicki Nonlinear ergodic theorems for asymptotically nonexpansive mappings in Banach spaces satisfying Opial's condition , 1991 .

[6]  Jürgen Schu,et al.  Iterative construction of fixed points of asymptotically nonexpansive mappings , 1991 .

[7]  Hong-Kun Xu,et al.  Existence and convergence for fixed points of mappings of asymptotically nonexpansive type , 1991 .

[8]  Chris Lennard,et al.  A new convexity property that implies a fixed point property for $L_{1}$ , 1991 .

[9]  Jarosław Górnicki,et al.  Weak convergence theorems for asymptotically nonexpansive mappings in uniformly convex Banach spaces , 1989 .

[10]  D. Tingley An asymptotically nonexpansive commutative semigroup with no fixed points , 1986 .

[11]  T. Kuczumow Weak convergence theorems for nonexpansive mappings and semigroups in Banach spaces with Opial’s property , 1985 .

[12]  Elliott H. Lieb,et al.  A Relation Between Pointwise Convergence of Functions and Convergence of Functionals , 1983 .

[13]  Simeon Reich,et al.  A note on the mean ergodic theorem for nonlinear semigroups , 1983 .

[14]  Teck-Cheong Lim,et al.  Asymptotic centers and nonexpansive mappings in conjugate Banach spaces , 1980 .

[15]  K. Goebel,et al.  Irregular convex sets with fixed-point property for nonexpansive mappings , 1979 .

[16]  Simeon Reich,et al.  Almost convergence and nonlinear ergodic theorems , 1978 .

[17]  M. Edelstein,et al.  Nonexpansive Mappings, Asymptotic Regularity and Successive Approximations , 1978 .

[18]  Ronald E. Bruck On the almost-convergence of iterates of a nonexpansive mapping in Hilbert space and the structure of the weak ω-limit set , 1978 .

[19]  S. Reich NONLINEAR EVOLUTION EQUATIONS AND NONLINEAR ERGODIC THEOREMS , 1977 .

[20]  J. Baillon Un theoreme de type ergodique pour les contractions non lineaires dans un espace de Hilbert , 1975 .

[21]  William A. Kirk,et al.  Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type , 1974 .

[22]  Jean-Pierre Gossez,et al.  Some geometric properties related to the fixed point theory for nonexpansive mappings. , 1972 .

[23]  William A. Kirk,et al.  A FIXED POINT THEOREM FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS , 1972 .

[24]  Z. Opial Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .