High performance approach for inner structures visualisation in medical data

The capacity and fidelity of image-based diagnosis were extended due to the evolution of medical image acquisition techniques. Such data is usually visualised through volume rendering, which denotes a set of techniques used to present three-dimensional images with the main goal of showing the interior of a volume and enabling the identification of its inner regions and structures. Several tools described in the literature are dedicated to explore different ways of incorporating seeing-through capabilities into volume rendering techniques. However, these tools are based on visualisation algorithms and are usually computationally intensive, especially when working with large datasets. An alternative to optimise rendering time is to use high performance programming to implement such tools, thus providing a faster response to user interaction. This paper presents a new approach to visualise inner structures in medical volume data using a parallel ray casting algorithm to allow user interaction with the volume.

[1]  Ricardo Farias,et al.  ZSWEEP: An Efficient and Exact Projection Algorithm for Unstructured Volume Rendering , 2000, 2000 IEEE Symposium on Volume Visualization (VV 2000).

[2]  Kwan-Liu Ma,et al.  SLIC: scheduled linear image compositing for parallel volume rendering , 2003, IEEE Symposium on Parallel and Large-Data Visualization and Graphics, 2003. PVG 2003..

[3]  Martin Kraus,et al.  High-quality pre-integrated volume rendering using hardware-accelerated pixel shading , 2001, HWWS '01.

[4]  Cláudio T. Silva,et al.  Parallelizing the ZSWEEP Algorithm for Distributed-Shared Memory Architectures (ST) , 2001, VG.

[5]  Kwan-Liu Ma,et al.  A PC cluster system for simultaneous interactive volumetric modeling and visualization , 2003, IEEE Symposium on Parallel and Large-Data Visualization and Graphics, 2003. PVG 2003..

[6]  Rüdiger Westermann,et al.  Acceleration techniques for GPU-based volume rendering , 2003, IEEE Visualization, 2003. VIS 2003..

[7]  Shannon Bradshaw,et al.  A distributed, parallel, interactive volume rendering package , 1994, Proceedings Visualization '94.

[8]  William Schroeder,et al.  The Visualization Toolkit: An Object-Oriented Approach to 3-D Graphics , 1997 .

[9]  A. Kaufman,et al.  Adaptive perspective ray casting , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[10]  Marc Levoy,et al.  Volume rendering on scalable shared-memory MIMD architectures , 1992, VVS.

[11]  E. Wes Bethel,et al.  Sort-first, distributed memory parallel visualization and rendering , 2003, IEEE Symposium on Parallel and Large-Data Visualization and Graphics, 2003. PVG 2003..

[12]  Ken Brodlie,et al.  Recent Advances in Volume Visualization , 2001, Comput. Graph. Forum.

[13]  Barthold Lichtenbelt,et al.  Introduction to volume rendering , 1998 .

[14]  Kenneth Moreland,et al.  From cluster to wall with VTK , 2003, IEEE Symposium on Parallel and Large-Data Visualization and Graphics, 2003. PVG 2003..

[15]  Arie Kaufman,et al.  Volume Visualization (Tutorial) , 1991 .

[16]  Eduard Gröller,et al.  Two-Level Volume Rendering , 2001, IEEE Trans. Vis. Comput. Graph..

[17]  Marc Levoy,et al.  Efficient ray tracing of volume data , 1990, TOGS.

[18]  William E. Lorensen,et al.  The visualization toolkit (2nd ed.): an object-oriented approach to 3D graphics , 1998 .

[19]  Luigi Benedicenti,et al.  An Architecture for Java-Based Real-Time Distributed Visualization , 2003, IEEE Trans. Vis. Comput. Graph..

[20]  Hanspeter Pfister,et al.  The VolumePro real-time ray-casting system , 1999, SIGGRAPH.

[21]  Greg Humphreys,et al.  Chromium: a stream-processing framework for interactive rendering on clusters , 2002, SIGGRAPH.

[22]  William J. Schroeder,et al.  A Parallel Approach for Efficiently Visualizing Extremely Large, Time-Varying Datasets , 2000 .

[23]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[24]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[25]  R. Nick Bryan,et al.  Confocal volume rendering: fast, segmentation-free visualization of internal structures , 2000, Medical Imaging.

[26]  Ronald M. Summers,et al.  Confocal volume rendering of the thorax , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[27]  G. Herman,et al.  3D Imaging In Medicine , 1991 .

[28]  E. Wes Bethel,et al.  Combining a multithreaded scene graph system with a tiled display environment , 2002, IS&T/SPIE Electronic Imaging.

[29]  Arie E. Kaufman Volume visualization , 1996, CSUR.

[30]  Richard A. Robb Three-Dimensional Biomedical Imaging: Principles and Practice , 1995 .