Guided-wave frequency doubling in surface periodically poled lithium niobate: competing effects

We carried out second-harmonic generation in quasi-phase-matched α-phase lithium niobate channel waveguides realized by proton exchange and surface periodic poling. Owing to a limited ferroelectric domain depth, we could observe the interplay between second-harmonic generation and self-phase modulation due to cascading and cubic effects, resulting in a nonlinear resonance shift. Data reduction allowed us to evaluate both the quadratic nonlinearity in the near infrared as well as the depth of the uninverted domains.

[1]  Robert W. Eason,et al.  First order quasi-phase matched blue light generation in surface poled Ti-indiffused lithium niobate waveguide , 2002, 1209.5288.

[2]  J. Manassah,et al.  Induced phase modulation of a generated second-harmonic signal. , 1987, Optics letters.

[3]  G. Stegeman,et al.  NONLINEAR OPTICS BASICS: CASCADING , 2004 .

[4]  G. Landry,et al.  Counterpropagating quasi-phase matching: a generalized analysis , 2004 .

[5]  Fredrik Laurell,et al.  Backward quasi-phase-matched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO4 , 2005 .

[6]  G. Stegeman,et al.  NONLINEAR INTEGRATED OPTICAL DEVICES , 1999 .

[7]  C. Conti,et al.  Focusing versus Defocusing Nonlinearities due to Parametric Wave Mixing , 2001 .

[8]  V A Fedorov,et al.  Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate. , 1996, Applied optics.

[9]  Pascal Baldi,et al.  Soft proton exchange on periodically poled LiNbO3: A simple waveguide fabrication process for highly efficient nonlinear interactions , 2000 .

[10]  Quasi-phase-matched parametric interactions in proton-exchanged lithium niobate waveguides , 1997 .

[11]  A Kobyakov,et al.  Analytical approach to all-optical modulation by cascading. , 1995, Optics letters.

[12]  M. Yamada,et al.  First‐order quasi‐phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second‐harmonic generation , 1993 .

[13]  Ding,et al.  Transversely pumped counterpropagating optical parametric oscillation and amplification. , 1995, Physical review letters.

[14]  M. Fejer,et al.  Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide , 1989 .

[15]  W. Risk,et al.  Backward second-harmonic and third-harmonic generation in a periodically poled potassium titanyl phosphate waveguide. , 1999, Optics letters.

[16]  Mansoor Sheik-Bahae,et al.  Infrared to ultraviolet measurements of two-photon absorption and n/sub 2/ in wide bandgap solids , 1996 .

[17]  Yujie J. Ding,et al.  Backward second-harmonic generation in periodically poled lithium niobate , 1998 .

[18]  S. Miyazawa Ferroelectric domain inversion in Ti‐diffused LiNbO3 optical waveguide , 1979 .

[19]  Gaetano Assanto,et al.  Silica masks for improved surface poling of lithium niobate , 2005 .

[20]  C. B. Clausen,et al.  Spatial Solitons and Induced Kerr Effects in Quasi-Phase-Matched Quadratic Media , 1997 .

[21]  Masatoshi Fujimura,et al.  Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate. , 2002, Optics letters.

[22]  A comparison of optical damage in different types of LiNbO3 waveguides , 1989 .

[23]  G. Stegeman,et al.  Self-focusing and self-defocusing by cascaded second-order effects in KTP. , 1992, Optics letters.

[24]  Hiromasa Ito,et al.  Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes , 1991 .

[25]  C. Conti,et al.  Cavityless oscillation through backward quasi-phase-matched second-harmonic generation. , 1999, Optics letters.

[26]  J. Melinger,et al.  Backward second-harmonic generation in periodically poled bulk LiNbO(3). , 1997, Optics letters.

[27]  David J. Hagan,et al.  All‐optical modulation via nonlinear cascading in type II second‐harmonic generation , 1995 .

[28]  G I Stegeman,et al.  Large nonlinear phase shifts in second-order nonlinear-optical processes. , 1993, Optics letters.

[29]  Ramu V. Ramaswamy,et al.  Characterization of annealed proton exchanged LiNbO/sub 3/ waveguides for nonlinear frequency conversion , 1992 .

[30]  J. Veselka,et al.  Proton exchange for high‐index waveguides in LiNbO3 , 1982 .

[31]  P. F. Heidrich,et al.  Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis. , 1976, Applied optics.

[32]  A. Ivanov,et al.  Influence of cascading phenomena on a type I second-harmonic wave generated by an intense femtosecond pulse: application to the measurement of the effective second-order coefficient. , 1998, Optics letters.

[33]  Backward quasi phase matched second harmonic generation in sub-micron periodically poled KTiOPO/sub 4/ , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[34]  R. Eason,et al.  Surface domain engineering in congruent lithium niobate single crystals: A route to submicron periodic poling , 2002, 1210.1374.

[35]  Robert J. Lang,et al.  Visible laser sources based on frequency doubling in nonlinear waveguides , 1997 .

[36]  M. Fejer,et al.  PHYSICAL BASIS OF THE DOMAIN ENGINEERING IN THE BULK FERROELECTRICS , 1999 .

[37]  G. Assanto Transistor action through nonlinear cascading in Type II interactions. , 1995, Optics letters.

[38]  M. Fejer,et al.  Quasi-phase-matched second harmonic generation: tuning and tolerances , 1992 .

[39]  Toshiaki Suhara,et al.  Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings , 1990 .

[40]  I. A. Kulagin,et al.  Analysis of third-order nonlinear susceptibilities of quadratic nonlinear optical crystals , 2006 .

[41]  A Kobyakov,et al.  Nonlinear phase shift and all-optical switching in quasi-phase-matched quadratic media. , 1998, Optics letters.

[42]  C. Canali,et al.  Crystalline and optical quality of proton exchanged waveguides , 1986 .

[43]  M De Micheli,et al.  Cascading phase shift and multivalued response in counterpropagating frequency-nondegenerate parametric amplifiers. , 2000, Optics letters.

[44]  Martin M. Fejer,et al.  Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides with simultaneous strong pump depletion and group-velocity walk-off , 2002 .

[45]  Yujie J. Ding,et al.  Backward second-harmonic generation in submicron-period ion-exchanged KTiOPO4 waveguide , 2000 .

[46]  Mansoor Sheik-Bahae,et al.  Coherent interactions for all-optical signal processing via quadratic nonlinearities , 1995 .