Environmental effects of leachate extracts from reclaimed asphalt pavement: determination of metals, polycyclic aromatic hydrocarbon and acute toxicity to Daphnia magna

ABSTRACT Pavimentos asfálticos fresados (PAF) apresentam uma variedade de compostos orgânicos e inorgânicos que podem interagir com o meio ambiente e promover efeitos deletérios à saúde humana. Este estudo investigou o potencial de toxicidade dos PAF por meio da determinação de metais, hidrocarbonetos policíclicos aromáticos (HPA) e testes de toxicidade aguda com Daphnia magna. Foram comparados extratos lixiviados e solubilizados de amostras de PAF e de resíduo asfáltico fresco. As análises de Mn apresentaram concentrações acima do critério de aceitação normativo brasileiro para os extratos solubilizados. As amostras resultaram em concentrações de Cd, Cr e Pb, que estão na lista de substâncias que conferem periculosidade aos resíduos. Em relação aos HPA, duas amostras de lixiviado apresentaram concentração de BaP acima do valor máximo permitido e as demais amostras apresentaram valores de BaP próximos ao limite estabelecido. Ademais, foram identificadas nas amostras concentrações de BaA, BbF, IcdP e Chr. Para os ensaios de toxicidade aguda, duas amostras solubilizadas indicaram toxicidade aguda para Daphnia magna. Os resultados indicaram que o método de preparo dos lixiviados e do extrato solubilizado influenciaram os valores de metais e a toxicidade aguda. Duas amostras de PAF foram classificadas como resíduos perigosos, sinalizando que tais materiais apresentam potencial para lixiviar substâncias perigosas ao ambiente. Portanto, a disposição em solo desse tipo de resíduo deve ser criteriosa, uma vez que sua composição contém substâncias que podem impactar o meio ambiente e causar efeitos toxicológicos em organismos vivos.

[1]  R. Chhabra,et al.  Performance analysis of cement treated base layer by incorporating reclaimed asphalt pavement material and chemical stabilizer , 2021 .

[2]  T. Townsend,et al.  A critical analysis of leaching and environmental risk assessment for reclaimed asphalt pavement management , 2021, Science of The Total Environment.

[3]  Daniel C W Tsang,et al.  Quantitative source tracking of heavy metals contained in urban road deposited sediments. , 2020, Journal of hazardous materials.

[4]  A. Aydilek,et al.  Hydraulic and environmental impacts of using recycled asphalt pavement on highway shoulders , 2020 .

[5]  Aftab Akbar Effects of Aging on the Performance of Aggregates in Reclaimed Asphalt Pavement , 2019 .

[6]  Y. Lechón,et al.  Environmental footprint of a road pavement rehabilitation service in Spain. , 2019, Journal of environmental management.

[7]  D. Alessi,et al.  Biogeochemical Behavior of Metals Along Two Permeable Reactive Barriers in a Mining‐Affected Wetland , 2019, Journal of Geophysical Research: Biogeosciences.

[8]  D. Alessi,et al.  Potential of asphalt concrete as a source of trace metals , 2019, Environmental Geochemistry and Health.

[9]  E. Romeo,et al.  Evaluation of “long-term behaviour under traffic” of cement treated mixture with RAP , 2019, Construction and Building Materials.

[10]  X. Querol,et al.  Nanoparticles from construction wastes: A problem to health and the environment , 2019, Journal of Cleaner Production.

[11]  Weiying Wang,et al.  Investigating impacts of warm-mix asphalt technologies and high reclaimed asphalt pavement binder content on rutting and fatigue performance of asphalt binder through MSCR and LAS tests , 2019, Journal of Cleaner Production.

[12]  S. Amirkhanian,et al.  Performance grades, environmental and economic investigations of reclaimed asphalt pavement materials , 2019, Journal of Cleaner Production.

[13]  Serji N. Amirkhanian,et al.  Low temperature grade determinations of asphalt mortar without extraction before and after one year storage duration , 2017 .

[14]  Ezio Santagata,et al.  Life cycle assessment applied to bituminous mixtures containing recycled materials: Crumb rubber and reclaimed asphalt pavement , 2017 .

[15]  Arul Arulrajah,et al.  Recycled asphalt pavement - fly ash geopolymers as a sustainable pavement base material: Strength and toxic leaching investigations. , 2016, The Science of the total environment.

[16]  A. Sha,et al.  Experimental study on filtration effect and mechanism of pavement runoff in permeable asphalt pavement , 2015 .

[17]  Imad L. Al-Qadi,et al.  Environmental and economic analyses of recycled asphalt concrete mixtures based on material production and potential performance , 2015 .

[18]  T. Townsend,et al.  Source of polycyclic aromatic hydrocarbon in roadway and stormwater system maintenance residues , 2015, Environmental Earth Sciences.

[19]  P. Krebs,et al.  The qualitative and quantitative source apportionments of polycyclic aromatic hydrocarbons in size dependent road deposited sediment. , 2015, The Science of the total environment.

[20]  T. Astrup,et al.  Composition and leaching of construction and demolition waste: inorganic elements and organic compounds. , 2014, Journal of hazardous materials.

[21]  O. Evrard,et al.  Combining measurements and modelling to quantify the contribution of atmospheric fallout, local industry and road traffic to PAH stocks in contrasting catchments. , 2014, Environmental pollution.

[22]  Banu Çetin Soil concentrations and source apportionment of polybrominated diphenyl ethers (PBDEs) and trace elements around a heavily industrialized area in Kocaeli, Turkey , 2014, Environmental Science and Pollution Research.

[23]  A. Aydilek,et al.  pH and fly ash type effect on trace metal leaching from embankment soils , 2013 .

[24]  H. A. van der Sloot,et al.  Field site leaching from recycled concrete aggregates applied as sub-base material in road construction. , 2012, The Science of the total environment.

[25]  John Siekmeier,et al.  Recycled Materials as Substitutes for Virgin Aggregates in Road Construction: II. Inorganic Contaminant Leaching , 2011 .

[26]  Byeong-Kyu Lee,et al.  Effects of road characteristics on distribution and toxicity of polycyclic aromatic hydrocarbons in urban road dust of Ulsan, Korea. , 2010, Journal of hazardous materials.

[27]  Ranjeet S. Sokhi,et al.  Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation , 2008 .

[28]  David S T Hjortenkrans,et al.  Metal emissions from brake linings and tires: case studies of Stockholm, Sweden 1995/1998 and 2005. , 2007, Environmental science & technology.

[29]  B. Peake,et al.  Sources of heavy metals and polycyclic aromatic hydrocarbons in urban stormwater runoff. , 2006, The Science of the total environment.

[30]  M. Legret,et al.  Leaching of heavy metals and polycyclic aromatic hydrocarbons from reclaimed asphalt pavement. , 2005, Water research.

[31]  J. Tay,et al.  Changes in mobility and speciation of heavy metals in clay-amended incinerator fly ash , 2004 .

[32]  H. Brandt,et al.  Aqueous leaching of polycyclic aromatic hydrocarbons from bitumen and asphalt. , 2001, Water research.

[33]  Ana Elisa,et al.  AVALIAÇÃO DA CONTAMINAÇÃO HUMANA POR HIDROCARBONETOS POLICÍCLICOS AROMÁTICOS (HPAS) E SEUS DERIVADOS NITRADOS (NHPAS): UMA REVISÃO METODOLÓGICA , 2000 .

[34]  Timothy G. Townsend,et al.  Leaching of Pollutants from Reclaimed Asphalt Pavement , 1999 .

[35]  E. Steinnes,et al.  Ectomycorrhizal heavy metal accumulation as a contributing factor to heavy metal levels in organic surface soils , 1995 .

[36]  Marco Guerrieri,et al.  Environmentally appraising different pavement and construction scenarios: A comparative analysis for a typical local road , 2015 .

[37]  O. V. Akpoveta,et al.  Determination of Heavy Metal Contents in Refined Petroleum Products , 2014 .

[38]  G. Sangiorgi,et al.  Exhaust emissions of polycyclic aromatic hydrocarbons, n-alkanes and phenols from vehicles coming within different European classes , 2014 .

[39]  Yue Huang,et al.  Development of a life cycle assessment tool for construction and maintenance of asphalt pavements , 2009 .