Biohydrogen Machinery: Recent Insights, Genetic Fabrication, and Future Prospects

[1]  Juanita Mathews,et al.  Characterization of hydrogen production by engineered Escherichia coli strains using rich defined media , 2010 .

[2]  A. Latifi,et al.  Distribution of Hydrogenases in Cyanobacteria: A Phylum-Wide Genomic Survey , 2016, Front. Genet..

[3]  A. Volbeda,et al.  High-resolution crystallographic analysis of Desulfovibrio fructosovorans [NiFe] hydrogenase , 2002 .

[4]  D. Rees,et al.  Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii. , 1992, Science.

[5]  R. Banerjee,et al.  Comparison of biohydrogen production processes , 2008 .

[6]  Peter Lindblad,et al.  Increased H2 production in the cyanobacterium Synechocystis sp. strain PCC 6803 by redirecting the electron supply via genetic engineering of the nitrate assimilation pathway. , 2011, Metabolic engineering.

[7]  P. Lindblad,et al.  Heterocyst-Specific Excision of the Anabaena sp. Strain PCC 7120 hupL Element Requires xisC , 2005, Journal of bacteriology.

[8]  E. Münck,et al.  Electronic Structure of the H Cluster in [Fe]-Hydrogenases , 1999 .

[9]  W. Vermaas,et al.  Succinate Dehydrogenase and Other Respiratory Pathways in Thylakoid Membranes of Synechocystis sp. Strain PCC 6803: Capacity Comparisons and Physiological Function , 2001, Journal of bacteriology.

[10]  N. Yasuoka,et al.  Removal of the bridging ligand atom at the Ni-Fe active site of [NiFe] hydrogenase upon reduction with H2, as revealed by X-ray structure analysis at 1.4 A resolution. , 1999, Structure.

[11]  J. Meyer,et al.  [FeFe] hydrogenases and their evolution: a genomic perspective , 2007, Cellular and Molecular Life Sciences.

[12]  S. Bhattacharya,et al.  Hydrogen production by Cyanobacteria , 2005, Microbial Cell Factories.

[13]  S. Chauhan,et al.  Bio-Hydrogen: Technology Developments in Microbial Fuel Cells and Their Future Prospects , 2020, Biotechnology for Biofuels: A Sustainable Green Energy Solution.

[14]  J. Heap,et al.  The ClosTron: Mutagenesis in Clostridium refined and streamlined. , 2010, Journal of microbiological methods.

[15]  W. Lubitz,et al.  Proton Coupled Electronic Rearrangement within the H-Cluster as an Essential Step in the Catalytic Cycle of [FeFe] Hydrogenases. , 2017, Journal of the American Chemical Society.

[16]  Y. Oh,et al.  Hydrogen production and metabolic flux analysis of metabolically engineered Escherichia coli strains , 2009 .

[17]  T. Wood,et al.  Current state and perspectives in hydrogen production by Escherichia coli: roles of hydrogenases in glucose or glycerol metabolism , 2018, Applied Microbiology and Biotechnology.

[18]  J. Puhakka,et al.  Fermentative hydrogen production by Clostridium butyricum and Escherichia coli in pure and cocultures , 2011 .

[19]  A. Tiwari,et al.  Cyanobacterial hydrogen production – A step towards clean environment , 2012 .

[20]  T. Wood,et al.  Hydrogen production by recombinant Escherichia coli strains , 2012, Microbial biotechnology.

[21]  X. Xing,et al.  Cloning and knockout of formate hydrogen lyase and H2-uptake hydrogenase genes in Enterobacter aerogenes for enhanced hydrogen production , 2009 .

[22]  T. Wood,et al.  Beneficial knockouts in Escherichia coli for producing hydrogen from glycerol , 2015, Applied Microbiology and Biotechnology.

[23]  H. Sakurai,et al.  High Photobiological Hydrogen Production Activity of a Nostoc sp. PCC 7422 Uptake Hydrogenase-Deficient Mutant with High Nitrogenase Activity , 2006, Marine Biotechnology.

[24]  M. Adams,et al.  The Iron-Hydrogenase of Thermotoga maritima Utilizes Ferredoxin and NADH Synergistically: a New Perspective on Anaerobic Hydrogen Production , 2009, Journal of bacteriology.

[25]  S. Chauhan,et al.  Biofuels: Sources, Modern Technology Developments and Views on Bioenergy Management , 2020 .

[26]  R. P. Rastogi,et al.  Microalgal hydrogen production - A review. , 2017, Bioresource technology.

[27]  T. Veziroglu,et al.  Hydrogen production from phototrophic microorganisms: Reality and perspectives , 2019, International Journal of Hydrogen Energy.

[28]  S. Chauhan,et al.  Production of (Z)-11-(heptanoyloxy)undec-9-enoic acid from ricinoleic acid by utilizing crude glycerol as sole carbon source in engineered Escherichia coli expressing BVMO-ADH-FadL. , 2018, Enzyme and microbial technology.

[29]  W. Lubitz,et al.  Spectroelectrochemical characterization of the active site of the [FeFe] hydrogenase HydA1 from Chlamydomonas reinhardtii. , 2009, Biochemistry.

[30]  Jo-Shu Chang,et al.  Fermentative hydrogen production from wastewaters: A review and prognosis , 2012 .

[31]  A. Pierik,et al.  Biological activition of hydrogen , 1997, Nature.

[32]  P. Lindblad,et al.  Cyanobacterial H2 production — a comparative analysis , 2004, Planta.

[33]  Yvain Nicolet,et al.  Maturation of [FeFe]-hydrogenases: Structures and mechanisms , 2010 .

[34]  R. Eady Structure−Function Relationships of Alternative Nitrogenases , 1996 .

[35]  Dong-Hoon Kim,et al.  Hydrogenases for biological hydrogen production. , 2011, Bioresource technology.

[36]  J. Fontecilla-Camps,et al.  Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. , 1999, Structure.

[37]  I. Eroglu,et al.  Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides , 2002 .

[38]  Thomas K. Wood,et al.  Metabolic engineering to enhance bacterial hydrogen production , 2007, Microbial biotechnology.

[39]  J. Heap,et al.  The ClosTron: a universal gene knock-out system for the genus Clostridium. , 2007, Journal of microbiological methods.

[40]  S. Shima,et al.  The Crystal Structure of [Fe]-Hydrogenase Reveals the Geometry of the Active Site , 2008, Science.

[41]  Yvain Nicolet,et al.  Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. , 2007, Chemical reviews.

[42]  William E. Newton,et al.  Nitrogen Fixation and Hydrogen Metabolism in Cyanobacteria , 2010, Microbiology and Molecular Biology Reviews.

[43]  Seigo Shima,et al.  A third type of hydrogenase catalyzing H2 activation. , 2007, Chemical record.

[44]  Paulette M. Vignais,et al.  Sustained Photoevolution of Molecular Hydrogen in a Mutant of Synechocystis sp. Strain PCC 6803 Deficient in the Type I NADPH-Dehydrogenase Complex , 2004, Journal of bacteriology.

[45]  G. Rao,et al.  Bioassembly of complex iron–sulfur enzymes: hydrogenases and nitrogenases , 2020, Nature Reviews Chemistry.

[46]  T. Wood,et al.  Metabolically engineered bacteria for producing hydrogen via fermentation , 2007, Microbial biotechnology.

[47]  Michel Frey,et al.  Crystal structure of the nickel–iron hydrogenase from Desulfovibrio gigas , 1995, Nature.