Exploiting the Natural Diversity of Microviridin Gene Clusters for Discovery of Novel Tricyclic Depsipeptides

ABSTRACT Microviridins are ribosomally synthesized tricyclic depsipeptides produced by different genera of cyanobacteria. The prevalence of the microviridin gene clusters and the natural diversity of microviridin precursor sequences are currently unknown. Screening of laboratory strains and field samples of the bloom-forming freshwater cyanobacterium Microcystis via PCR revealed global occurrence of the microviridin pathway and an unexpected natural variety. We could detect 15 new variants of the precursor gene mdnA encoding microviridin backbones that differ in up to 4 amino acid positions from known isoforms of the peptide. The survey not only provides insights into the versatility of the biosynthetic enzymes in a closely related group of cyanobacteria, but also facilitates the discovery and characterization of cryptic microviridin variants. This is demonstrated for microviridin L in Microcystis aeruginosa strain NIES843 and heterologously produced variants.

[1]  S. Carmeli,et al.  Protease inhibitors from a water bloom of the cyanobacterium Microcystis aeruginosa. , 2009, Journal of natural products.

[2]  C. Hertweck,et al.  The biosynthetic logic of polyketide diversity. , 2009, Angewandte Chemie.

[3]  T. Hemscheidt,et al.  Substrate specificity and scope of MvdD, a GRASP-like ligase from the microviridin biosynthetic gene cluster. , 2009, ACS chemical biology.

[4]  C. Hertweck,et al.  Triggering cryptic natural product biosynthesis in microorganisms. , 2009, Organic & biomolecular chemistry.

[5]  M. Donia,et al.  Chapter 23. Cyanobactin ribosomally synthesized peptides--a case of deep metagenome mining. , 2009, Methods in enzymology.

[6]  Harald Gross,et al.  Genomic mining--a concept for the discovery of new bioactive natural products. , 2009, Current opinion in drug discovery & development.

[7]  V. Vasconcelos,et al.  Peptide diversity in strains of the cyanobacterium Microcystis aeruginosa isolated from Portuguese water supplies , 2009, Applied Microbiology and Biotechnology.

[8]  T. Kristensen,et al.  A genome-wide analysis of nonribosomal peptide synthetase gene clusters and their peptides in a Planktothrix rubescens strain , 2009, BMC Genomics.

[9]  T. Hemscheidt,et al.  Post‐translational Modification in Microviridin Biosynthesis , 2008, Chembiochem : a European journal of chemical biology.

[10]  K. Sivonen,et al.  Widespread Occurrence and Lateral Transfer of the Cyanobactin Biosynthesis Gene Cluster in Cyanobacteria , 2008, Applied and Environmental Microbiology.

[11]  E. Dittmann,et al.  Ribosomal synthesis of tricyclic depsipeptides in bloom-forming cyanobacteria. , 2008, Angewandte Chemie.

[12]  Andrew C. Tolonen,et al.  Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium , 2008, BMC Genomics.

[13]  E. Dittmann,et al.  Microcyclamide Biosynthesis in Two Strains of Microcystis aeruginosa: from Structure to Genes and Vice Versa , 2008, Applied and Environmental Microbiology.

[14]  S. Tabata,et al.  Complete Genomic Structure of the Bloom-forming Toxic Cyanobacterium Microcystis aeruginosa NIES-843 , 2008, DNA research : an international journal for rapid publication of reports on genes and genomes.

[15]  V. Vasconcelos,et al.  Multiplex PCR for the detection of toxigenic cyanobacteria in dietary supplements produced for human consumption , 2007, Applied Microbiology and Biotechnology.

[16]  Bernard R. Baum,et al.  Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components , 1997, Plant Molecular Biology Reporter.

[17]  S. Carmeli,et al.  New microviridins from a water bloom of the cyanobacterium Microcystis aeruginosa , 2006 .

[18]  M. Welker,et al.  Cyanobacterial peptides - nature's own combinatorial biosynthesis. , 2006, FEMS microbiology reviews.

[19]  Elke Dittmann,et al.  Cyanobacterial toxins--occurrence, biosynthesis and impact on human affairs. , 2006, Molecular nutrition & food research.

[20]  M. Namikoshi,et al.  Bioactive compounds produced by cyanobacteria , 1996, Journal of Industrial Microbiology.

[21]  T. Rohrlack,et al.  Cyanobacterial Protease Inhibitor Microviridin J Causes a Lethal Molting Disruption in Daphnia pulicaria , 2004, Applied and Environmental Microbiology.

[22]  P. Hansen,et al.  Isolation, Characterization, and Quantitative Analysis of Microviridin J, a New Microcystis Metabolite Toxic to Daphnia , 2003, Journal of Chemical Ecology.

[23]  S. Shapiro,et al.  Proteinases in chronic obstructive pulmonary disease. , 2001, Biochemical Society transactions.

[24]  L. Partridge The Insulin Signaling Pathway and Aging in Drosophila , 2001, TheScientificWorldJournal.

[25]  S. Shibata,et al.  A proposal for the unification of five species of the cyanobacterial genus Microcystis Kützing ex Lemmermann 1907 under the rules of the Bacteriological Code. , 2001, International journal of systematic and evolutionary microbiology.

[26]  Hans W. Paerl,et al.  Harmful Freshwater Algal Blooms, With an Emphasis on Cyanobacteria , 2001, TheScientificWorldJournal.

[27]  K. Sivonen,et al.  Non-Toxic Peptides from Toxic Cyanobacteria, Oscillatoria agardhii , 2000 .

[28]  D. Cardo,et al.  Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. , 1998, The New England journal of medicine.

[29]  K. Ishida,et al.  Microviridins, elastase inhibitors from the cyanobacterium Nostoc minutum (NIES-26) , 1997 .

[30]  K. Yamaguchi,et al.  Microviridins D-F, serine protease inhibitors from the cyanobacterium Oscillatoria agardhii (NIES-204)☆ , 1996 .

[31]  K. Yamaguchi,et al.  New microviridins, elastase inhibitors from the blue-green alga Microcystis aeruginosa , 1995 .

[32]  K. Kaya,et al.  Microviridin. A novel tricyclic depsipeptide from the toxic cyanobacterium Microcystis viridis , 1990 .

[33]  C. Franche,et al.  [88] Tests on nif probes and DNA hybridizations , 1988 .