Deep Ultraviolet Resonance Raman Excitation Enables Explosives Detection

We measured the 229 nm absolute ultraviolet (UV) Raman cross-sections of the explosives trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), cyclotrimethylene-trinitramine (RDX), the chemically related nitroamine explosive HMX, and ammonium nitrate in solution. The 229 nm Raman cross-sections are 1000-fold greater than those excited in the near-infrared and visible spectral regions. Deep UV resonance Raman spectroscopy enables detection of explosives at parts-per-billion (ppb) concentrations and may prove useful for stand-off spectroscopic detection of explosives.

[1]  Raman spectrometry of explosives with a no-moving-parts fiber coupled spectrometer : A comparison of excitation wavelength , 2005 .

[2]  J. Cooper,et al.  Simultaneous multianalyte identification of molecular species involved in terrorism using Raman spectroscopy , 2005, IEEE Sensors Journal.

[3]  A. Tripathi,et al.  Raman Chemical Imaging of Explosive-Contaminated Fingerprints , 2009, Applied spectroscopy.

[4]  S. Bykov,et al.  UV resonance raman investigation of electronic transitions in alpha-helical and polyproline II-like conformations. , 2008, The journal of physical chemistry. B.

[5]  Y. Gupta,et al.  Experimental and Theoretical Study of Pentaerythritol Tetranitrate Conformers , 2004 .

[6]  Michael Gaft,et al.  Absolute Raman cross-sections of some explosives : Trend to UV , 2008 .

[7]  P. Kumbhakar,et al.  Generation of coherent tunable deep UV radiation for detection and absorption studies of explosives RDX and TNT , 2007 .

[8]  M. Koshi,et al.  Vibron dynamics in RDX, β-HMX and Tetryl crystals , 2003 .

[9]  M. Probst,et al.  Quantum chemical study of the interaction of nitrate anion with water , 1998 .

[10]  Richard E. Whipple,et al.  Standoff Detection of High Explosive Materials at 50 Meters in Ambient Light Conditions Using a Small Raman Instrument , 2005, Applied spectroscopy.

[11]  Ida Johansson,et al.  Near Real‐Time Standoff Detection of Explosives in a Realistic Outdoor Environment at 55 m Distance , 2009 .

[12]  V. Tomišić,et al.  Comparison of the Temperature Effect on the π∗←n and π∗←π Electronic Transition Bands of NO3−(aq) , 2005 .

[13]  Sanford A. Asher,et al.  Dielectric Stack Filters for Ex Situ and In Situ UV Optical-Fiber Probe Raman Spectroscopic Measurements , 1997 .

[14]  C. Eckhardt,et al.  Single-crystal, polarized, Raman scattering study of the molecular and lattice vibrations for the energetic material cyclotrimethylene trinitramine , 2006 .

[15]  T. Abe Substituent Effects on the Ultraviolet Absorption Spectrum of 1,3,5-Trinitrobenzene in Some Solvents , 1959 .

[16]  Yuri A. Gruzdkov,et al.  Vibrational Properties and Structure of Pentaerythritol Tetranitrate , 2001 .

[17]  S. McGrane,et al.  Anharmonic vibrational properties of explosives from temperature-dependent Raman. , 2005, The journal of physical chemistry. A.

[18]  T. Lippert,et al.  Theoretical and Experimental Study of the Vibrational Spectra of the α, β, and δ Phases of Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) , 2002 .

[19]  N. Gupta,et al.  AOTF Raman spectrometer for remote detection of explosives. , 2000, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[20]  D. Sülzle,et al.  The Infrared, Raman and NMR Spectra of Hexamethylene Triperoxide Diamine. , 1988 .

[21]  C. G. Barraclough,et al.  Molecular orbital interpretation of the ultra-violet absorption spectra of unconjugated aliphatic nitramines , 1969 .

[22]  D. Irish,et al.  Interactions in aqueous alkali metal nitrate solutions , 1968 .

[23]  Y. Gupta,et al.  High pressure Raman spectroscopy of single crystals of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). , 2007, The journal of physical chemistry. B.

[24]  Reinhard Noll,et al.  Automated Detection of Fingerprint Traces of High Explosives Using Ultraviolet Raman Spectroscopy , 2009, Applied spectroscopy.

[25]  M. Waterland,et al.  Symmetry breaking effects in NO3−: Raman spectra of nitrate salts and ab initio resonance Raman spectra of nitrate–water complexes , 2001 .

[26]  David N. Batchelder,et al.  A theoretical study of the structure and vibrations of 2,4,6-trinitrotolune , 2003 .

[27]  Jacob Grun,et al.  Identification of Explosives with Two-Dimensional Ultraviolet Resonance Raman Spectroscopy , 2008, Applied spectroscopy.

[28]  Kevin L. McNesby,et al.  Characterization of raman spectral changes in energetic materials and propellants during heating , 1998 .

[29]  M. Orloff,et al.  Ultraviolet absorption spectrum of pentaerythritol tetranitrate , 1973 .

[30]  M. Gaft,et al.  Narrow gated Raman and luminescence of explosives , 2009 .

[31]  S. Bykov,et al.  Peptide secondary structure folding reaction coordinate: correlation between uv raman amide III frequency, Psi Ramachandran angle, and hydrogen bonding. , 2006, The journal of physical chemistry. B.

[32]  Ian R Lewis,et al.  Anti-Stokes Raman Spectrometry with 1064-nm Excitation: An Effective Instrumental Approach for Field Detection of Explosives , 2004, Applied spectroscopy.

[33]  M. Nicol,et al.  Raman scattering studies of the high-pressure stability of pentaerythritol tetranitrate, C(CH2ONO2)4. , 2005, The journal of physical chemistry. B.

[34]  Kien-Yin Lee,et al.  Submicron-Sized Gamma-HMX: 1. Preparation and Initial Characterization , 2007 .

[35]  Yehuda Zeiri,et al.  Raman and Infrared Fingerprint Spectroscopy of Peroxide-Based Explosives , 2008, Applied spectroscopy.

[36]  S. McGrane,et al.  Temperature-dependent Raman spectra of triaminotrinitrobenzene: Anharmonic mode couplings in an energetic material , 2003 .

[37]  Sanford A. Asher,et al.  UV resonance Raman saturation spectroscopy of tryptophan derivatives: photophysical relaxation measurements with vibrational band resolution , 1990 .

[38]  S. R. Ahmad,et al.  Pre-resonance Raman scattering in nitrobenzene vapour , 2000 .

[39]  S. R. Ahmad,et al.  Raman Cross-Section De-Enhancement Phenomenon in the Excitation Profile of the 1347 cm−1 Mode of Nitrobenzene , 1998 .

[40]  Sanford A. Asher,et al.  Ultraviolet resonance Raman characterization of photochemical transients of phenol, tyrosine, and tryptophan , 1986 .

[41]  C. S. Coffey,et al.  Spectroscopic Determination of Impact Sensitivities of Explosives. , 1997 .

[42]  C. Eckhardt,et al.  Single-crystal, polarized raman-scattering study of the molecular and lattice vibrations for the energetic material cyclotetramethylenetetranitramine, β-polymorph (β-HMX) , 2005 .

[43]  D. Moore Determination of energetic materials in soil using multivariate analysis of Raman spectra , 2001, Fresenius' journal of analytical chemistry.

[44]  R. Hemley,et al.  High-pressure vibrational spectroscopy of energetic materials: hexahydro-1,3,5-trinitro-1,3,5-triazine. , 2007, The journal of physical chemistry. A.

[45]  L. Pacheco-Londoño,et al.  Vibrational spectroscopy standoff detection of explosives , 2009, Analytical and bioanalytical chemistry.

[46]  入江 正浩,et al.  Bull. Chem. Soc. Jpn. への投稿のすすめ , 2011 .

[47]  R. J. Scharff,et al.  Portable Raman explosives detection , 2009, Analytical and bioanalytical chemistry.

[48]  First-principles study of the four polymorphs of crystalline octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. , 2007, The journal of physical chemistry. B.

[49]  Ian R. Lewis,et al.  Raman spectroscopic studies of explosive materials: towards a fieldable explosives detector , 1995 .

[50]  Arthur J. Sedlacek,et al.  Ultraviolet mini-Raman lidar for stand-off, in situ identification of chemical surface contaminants , 2000 .

[51]  Mark R. Waterland,et al.  Far-ultraviolet resonance Raman spectroscopy of nitrate ion in solution , 2000 .

[52]  H. Edwards,et al.  Detection of explosives on human nail using confocal Raman microscopy , 2009 .

[53]  Jijun Zhao,et al.  First-principles study of pentaerythritol tetranitrate single crystals under high pressure: Vibrational properties , 2006 .

[54]  Frank C De Lucia,et al.  Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues. , 2008, Applied optics.

[55]  Richard W. Bormett,et al.  UV Resonance Raman Spectroscopy Using a New cw Laser Source: Convenience and Experimental Simplicity , 1993 .

[56]  J. Huvenne,et al.  Self-Modeling Mixture Analysis Applied to FT-Raman Spectral Data of Hydrogen Peroxide Activation by Nitriles , 1997 .

[57]  J. Chalmers,et al.  Handbook of vibrational spectroscopy , 2002 .

[58]  Sanford A. Asher,et al.  Wavelength dependence of the preresonance Raman cross sections of CH3CN, SO42−, ClO4−, and NO3− , 1985 .

[59]  J. Stals THE CHEMISTRY OF ALIPHATIC UNCONJUGATED NITRAMINES. III. THERMAL, ELECTROPHILIC, AND NUCLEOPHILIC REACTIONS, , 1969 .

[60]  Michael Gaft,et al.  UV gated Raman spectroscopy for standoff detection of explosives , 2008 .

[61]  S. Asher,et al.  Raman spectroscopy of a coal liquid shows that fluorescence interference is minimized with ultraviolet excitation. , 1984, Science.

[62]  T. Brill,et al.  Laser Raman spectra of .alpha.-, .beta.-, .gamma.-, and .delta.-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and their temperature dependence , 1979 .

[63]  David S. Moore,et al.  Raman spectroscopy as a tool for long-term energetic material stability studies , 2007 .

[64]  D. Moore Instrumentation for trace detection of high explosives , 2004 .

[65]  Nairmen Mina,et al.  Vibrational Spectroscopy Study of β and α RDX Deposits , 2004 .

[66]  Ian R. Lewis,et al.  Interpretation of Raman Spectra of Nitro-Containing Explosive Materials. Part II: The Implementation of Neural, Fuzzy, and Statistical Models for Unsupervised Pattern Recognition , 1997 .

[67]  R. Bennett,et al.  UV-Excited Resonance Raman Spectroscopy of Narcotics and Explosives , 1998 .

[68]  S. Bykov,et al.  Steady-State and Transient Ultraviolet Resonance Raman Spectrometer for the 193–270 nm Spectral Region , 2005, Applied spectroscopy.

[69]  S. Asher,et al.  α-Helix Peptide Folding and Unfolding Activation Barriers: A Nanosecond UV Resonance Raman Study , 1999 .

[70]  S. Asher,et al.  UV resonance raman spectroscopic detection of nitrate and nitrite in wastewater treatment processes. , 2002, Analytical chemistry.

[71]  J. Stals Chemistry of aliphatic unconjugated nitramines. Part 4.—Photophysical processes of secondary nitramines , 1971 .

[72]  I. R. Lewis,et al.  Interpretation of Raman Spectra of Nitro-Containing Explosive Materials. Part I: Group Frequency and Structural Class Membership , 1997 .

[73]  B. Rode,et al.  A combined QM/MM molecular dynamics simulations study of nitrate anion (NO3-) in aqueous solution. , 2006, The journal of physical chemistry. A.

[74]  Frank C De Lucia,et al.  Laser-induced breakdown spectroscopy analysis of energetic materials. , 2003, Applied optics.